2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica A. Hensel ◽  
Brent D. Heineman ◽  
Amy L. Kimble ◽  
Evan R. Jellison ◽  
Bo Reese ◽  
...  

AbstractThe extracellular matrix protein fibronectin (FN) is alternatively spliced in a variety of inflammatory conditions, resulting in increased inclusion of alternative exons EIIIA and EIIIB. Inclusion of these exons affects fibril formation, fibrosis, and inflammation. To define upstream regulators of alternative splicing in FN, we have developed an in vitro flow-cytometry based assay, using RNA-binding probes to determine alternative exon inclusion level in aortic endothelial cells. This approach allows us to detect exon inclusion in the primary transcripts themselves, rather than in surrogate splicing reporters. We validated this assay in cells with and without FN-EIIIA and -EIIIB expression. In a small-scale CRISPR KO screen of candidate regulatory splice factors, we successfully detected known regulators of EIIIA and EIIIB splicing, and detected several novel regulators. Finally, we show the potential in this approach to broadly interrogate upstream signaling pathways in aortic endothelial cells with a genome-wide CRISPR-KO screen, implicating the TNFalpha and RIG-I-like signaling pathways and genes involved in the regulation of fibrotic responses. Thus, we provide a novel means to screen the regulation of splicing of endogenous transcripts, and predict novel pathways in the regulation of FN-EIIIA inclusion.


2020 ◽  
Author(s):  
Pablo Baeza-Centurion ◽  
Belén Miñana ◽  
Juan Valcárcel ◽  
Ben Lehner

AbstractGenetic analyses and systematic mutagenesis have revealed that synonymous, non-synonymous and intronic mutations frequently alter the inclusion levels of alternatively spliced exons, consistent with the concept that altered splicing might be a common mechanism by which mutations cause disease. However, most exons expressed in any cell are highly-included in mature mRNAs. Here, by performing deep mutagenesis of highly-included exons and by analysing the association between genome sequence variation and exon inclusion across the transcriptome, we report that mutations only very rarely alter the inclusion of highly-included exons. This is true for both exonic and intronic mutations as well as for perturbations in trans. Therefore, mutations that affect splicing are not evenly distributed across primary transcripts but are focussed in and around alternatively spliced exons with intermediate inclusion levels. These results provide a resource for prioritising synonymous and other variants as disease-causing mutations.


Author(s):  
Yimin Hua ◽  
Adrian R. Krainer
Keyword(s):  

RNA ◽  
2008 ◽  
Vol 14 (8) ◽  
pp. 1681-1695 ◽  
Author(s):  
M. S. Marengo ◽  
D. A. Wassarman

2017 ◽  
Vol 46 (2) ◽  
pp. e11-e11
Author(s):  
Jianyu Zhou ◽  
Shining Ma ◽  
Dongfang Wang ◽  
Jianyang Zeng ◽  
Tao Jiang

1995 ◽  
Vol 15 (11) ◽  
pp. 6291-6298 ◽  
Author(s):  
H Tian ◽  
R Kole

A 20-nucleotide sequence close to the 3' end of the internal exon of a model two-intron, three-exon pre-mRNA (DUP184 [Z. Dominski and R. Kole, J. Biol. Chem. 269:23590-23596, 1994]) was replaced by a random 20-mer, resulting in a pool of pre-mRNAs which, like the initial DUP184 construct, were spliced in vitro by a pathway leading to predominant skipping of the internal exon. The randomized pre-mRNAs were subjected to a selection protocol, resulting in a pool enriched in pre-mRNAs that efficiently included the internal exon. Isolation and sequencing of a number of clones corresponding to the selected pre-mRNAs showed that two classes of sequences were selected from the initial pool. Most abundant among these were sequences with purine tracts similar to those in the recently identified exon-splicing enhancers while a smaller class included sequences lacking discernible purine tracts within the 20-nucleotide region. Splicing of selected pre-mRNAs showed that the purine tracts vary in their ability to promote exon inclusion and, more important, that sequences lacking purine tracts stimulate inclusion of the internal exon as efficiently as their purine-rich counterparts. The latter result indicates the existence of a novel class of exon recognition sequences or splicing enhancers.


PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e29911 ◽  
Author(s):  
Stefan Enroth ◽  
Susanne Bornelöv ◽  
Claes Wadelius ◽  
Jan Komorowski

1999 ◽  
Vol 19 (1) ◽  
pp. 78-85 ◽  
Author(s):  
Hua Lou ◽  
David M. Helfman ◽  
Robert F. Gagel ◽  
Susan M. Berget

ABSTRACT Polypyrimidine tract-binding protein (PTB) is an abundant vertebrate hnRNP protein. PTB binding sites have been found within introns both upstream and downstream of alternative exons in a number of genes that are negatively controlled by the binding of PTB. We have previously reported that PTB binds to a pyrimidine tract within an RNA processing enhancer located adjacent to an alternative 3′-terminal exon within the gene coding for calcitonin and calcitonin gene-related peptide. The enhancer consists of a pyrimidine tract and CAG directly abutting on a 5′ splice site sequence to form a pseudoexon. Here we show that the binding of PTB to the enhancer pyrimidine tract is functional in that exon inclusion increases when in vivo levels of PTB increase. This is the first example of positive regulation of exon inclusion by PTB. The binding of PTB was antagonistic to the binding of U2AF to the enhancer-located pyrimidine tract. Altering the enhancer pyrimidine tract to a consensus sequence for the binding of U2AF eliminated enhancement of exon inclusion in vivo and exon polyadenylation in vitro. An additional PTB binding site was identified close to the AAUAAA hexanucleotide sequence of the exon 4 poly(A) site. These observations suggest a dual role for PTB in facilitating recognition of exon 4: binding to the enhancer pyrimidine tract to interrupt productive recognition of the enhancer pseudoexon by splicing factors and interacting with the poly(A) site to positively affect polyadenylation.


Sign in / Sign up

Export Citation Format

Share Document