A Full-System Approach to Formulation of Metal Nanoparticle Inks for Industrial Inkjet Printing

Author(s):  
Carsten Schauer ◽  
Alexander Rösch
2008 ◽  
Vol 130 (2) ◽  
Author(s):  
W. Habchi ◽  
D. Eyheramendy ◽  
P. Vergne ◽  
G. Morales-Espejel

The solution of the elastohydrodynamic lubrication (EHL) problem involves the simultaneous resolution of the hydrodynamic (Reynolds equation) and elastic problems (elastic deformation of the contacting surfaces). Up to now, most of the numerical works dealing with the modeling of the isothermal EHL problem were based on a weak coupling resolution of the Reynolds and elasticity equations (semi-system approach). The latter were solved separately using iterative schemes and a finite difference discretization. Very few authors attempted to solve the problem in a fully coupled way, thus solving both equations simultaneously (full-system approach). These attempts suffered from a major drawback which is the almost full Jacobian matrix of the nonlinear system of equations. This work presents a new approach for solving the fully coupled isothermal elastohydrodynamic problem using a finite element discretization of the corresponding equations. The use of the finite element method allows the use of variable unstructured meshing and different types of elements within the same model which leads to a reduced size of the problem. The nonlinear system of equations is solved using a Newton procedure which provides faster convergence rates. Suitable stabilization techniques are used to extend the solution to the case of highly loaded contacts. The complexity is the same as for classical algorithms, but an improved convergence rate, a reduced size of the problem and a sparse Jacobian matrix are obtained. Thus, the computational effort, time and memory usage are considerably reduced.


2017 ◽  
Vol 14 (4) ◽  
pp. 132-139 ◽  
Author(s):  
Michael J. Renn ◽  
Matthew Schrandt ◽  
Jaxon Renn ◽  
James Q. Feng

Direct-write methods, such as the Aerosol Jet® technology, have enabled fabrication of flexible multifunctional 3-D devices by printing electronic circuits on thermoplastic and thermoset polymer materials. Conductive traces printed by additive manufacturing typically start in the form of liquid metal nanoparticle inks. To produce functional circuits, the printed metal nanoparticle ink material must be postprocessed to form conductive metal by sintering at elevated temperature. Metal nanoparticles are widely used in conductive inks because they can be sintered at relatively low temperatures compared with the melting temperature of bulk metal. This is desirable for fabricating circuits on low-cost plastic substrates. To minimize thermal damage to the plastics, while effectively sintering the metal nanoparticle inks, we describe a laser sintering process that generates a localized heat-affected zone (HAZ) when scanning over a printed feature. For sintering metal nanoparticles that are reactive to oxygen, an inert or reducing gas shroud is applied around the laser spot to shield the HAZ from ambient oxygen. With the shroud gas-shielded laser, oxygen-sensitive nanoparticles, such as those made of copper and nickel, can be successfully sintered in open air. With very short heating time and small HAZ, the localized peak sintering temperature can be substantially higher than that of damage threshold for the underlying substrate, for effective metallization of nanoparticle inks. Here, we demonstrate capabilities for producing conductive tracks of silver, copper, and copper–nickel alloys on flexible films as well as fabricating functional thermocouples and strain gauge sensors, with printed metal nanoparticle inks sintered by shroud-gas-shielded laser.


2001 ◽  
Vol 676 ◽  
Author(s):  
C. J. Curtis ◽  
D. L. Schulz ◽  
A. Miedaner ◽  
J. Alleman ◽  
T. Rivkin ◽  
...  

ABSTRACTMetal-organic and hybrid metal-organic/metal nanoparticle inkswere evaluated for use in the inkjet printing of copper and silver conducting lines. Pure, smooth, dense, highly conductive coatings were produced by spray printing with (hexafluoroacetylacetonato)copper(I)-vinyltrimethylsilane Cu(hfa)·VTMS) and (hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene) (Ag(hfa)COD) metal-organic precursors on heated substrates. Good adhesion to the substrates tested, glass, Kapton tape and Si, has been achieved without use of adhesion promoters. The silver metal-organic ink has also beenused to print metal lines and patterns with a commercial inkjet printer. Hybrid inks comprised of metal nanoparticles mixed with the metal-organic complexes above have also been used to deposit Cu and Ag films by spray printing.This approach gives dense, adherent films that are much thicker than those obtained using the metal-organic inks alone. The conductivities of the silvercoatings obtained by both approaches are near that of bulk silver (2 μΩ·cm). The copper coatings had conductivities at least an order ofmagnitude less than bulk.


2015 ◽  
Vol 7 (22) ◽  
pp. 11755-11764 ◽  
Author(s):  
Elena V. Agina ◽  
Alexey S. Sizov ◽  
Mikhail Yu. Yablokov ◽  
Oleg V. Borshchev ◽  
Alexander A. Bessonov ◽  
...  

2020 ◽  
Author(s):  
Paolo Re ◽  
Francesco Lamboglia ◽  
Giorgio Missiaggia

2012 ◽  
Vol 259 ◽  
pp. 731-739 ◽  
Author(s):  
Thomas Öhlund ◽  
Jonas Örtegren ◽  
Sven Forsberg ◽  
Hans-Erik Nilsson

2010 ◽  
Vol 20 (12) ◽  
pp. 125010 ◽  
Author(s):  
Seung Hwan Ko ◽  
Jaewon Chung ◽  
Nico Hotz ◽  
Koo Hyun Nam ◽  
Costas P Grigoropoulos

Sign in / Sign up

Export Citation Format

Share Document