flash storage
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 43)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Glenn K. Lockwood ◽  
Alberto Chiusole ◽  
Nicholas J. Wright
Keyword(s):  

2021 ◽  
Vol 20 (5s) ◽  
pp. 1-24
Author(s):  
Yong-Xuan Wang ◽  
Chung-Hsuan Tsai ◽  
Li-Pin Chang

Android apps become increasingly memory-demanding as software vendors add more and more new features to their apps. In the mean time, Android users often launch multiple apps and conveniently switch back and forth among the apps. Although running multiple apps imposes a high pressure on memory management, virtual-memory swap, an essential feature to improve the degree of multitasking, is disabled in fear of premature retirement of flash-based storage devices. Instead, Android employs a termination-based, process-level memory reclaiming method. We observed that process killing is, unfortunately, not effective in memory reclaiming and is highly negative to user experience. In this study, we advocate re-thinking using swap in Android for improved user experience with managed write stress on flash storage. Based on a series of empirical analyses of swap activities, we propose an enhanced page replacement policy and a page-compressing frontswap module. The proposed page replacement policy jointly considers page activeness and compressibility to boost the compression ratio of swap writes. A sampled-based method for page compressibility prediction is introduced so that decisions on page replacement can be made without compressing every page. We also design a frontswap module that strategically organizes compressed pages in the swap space for reducing the overhead of swap I/O operations. Experimental results showed that compared with process killing, our method improved the app launching time and energy consumption by 58% and 19%, respectively; compared with the original swap, our approach reduced the swap write stress by 65%.


2021 ◽  
Author(s):  
Jinhao Fan ◽  
Ziyue Yang ◽  
Ran Shu ◽  
Peng Cheng ◽  
Yongqiang Xiong
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Nicola Cadenelli ◽  
Sang-Woo Jun ◽  
Jordà Polo ◽  
Andrew Wright ◽  
David Carrera ◽  
...  

Analysis of a patient's genomics data is the first step toward precision medicine. Such analyses are performed on expensive enterprise-class server machines because input data sets are large, and the intermediate data structures are even larger (TB-size) and require random accesses. We present a general method to perform a specific genomics problem, mutation detection, on a cheap commodity personal computer (PC) with a small amount of DRAM. We construct and access large histograms of k-mers efficiently on external storage (SSDs) and apply our technique to a state-of-the-art reference-free genomics algorithm, SMUFIN, to create SMUFIN-F. We show that on two PCs, SMUFIN-F can achieve the same throughput at only one third (36%) the hardware cost and half (45%) the energy compared to SMUFIN on an enterprise-class server. To the best of our knowledge, SMUFIN-F is the first reference-free system that can detect somatic mutations on commodity PCs for whole human genomes. We believe our technique should apply to other k-mer or n-gram-based algorithms.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 327
Author(s):  
Jong-Hyeok Park ◽  
Dong-Joo Park ◽  
Tae-Sun Chung ◽  
Sang-Won Lee

An FTL (flash translation layer), which most flash storage devices are equipped with, needs to guarantee the consistency of modified metadata from a sudden power failure. This crash recovery scheme significantly affects the writing performance of a flash storage device during its normal operation, as well as its reliability and recovery performance; therefore, it is desirable to make the crash recovery scheme efficient. Despite the practical importance of a crash recovery scheme in an FTL, few works exist that deal with the crash recovery issue in FTL in a comprehensive manner. This study proposed a novel crash recovery scheme called FastCheck for a hybrid mapping FTL called Fully Associative Sector Translation (FAST). FastCheck can efficiently secure the newly generated address-mapping information using periodic checkpoints, and at the same time, leverages the characteristics of an FAST FTL, where the log blocks in a log area are used in a round-robin way. Thus, it provides two major advantages over the existing FTL recovery schemes: one is having a low logging overhead during normal operations in the FTL and the other to have a fast recovery time in an environment where the log provisioning rate is relatively high, e.g., over 20%, and the flash memory capacity is very large, e.g., 32 GB or 64 GB.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Gyeongyong Lee ◽  
Jaewook Kwak ◽  
Joonyong Jeong ◽  
Daeyong Lee ◽  
Moonseok Jang ◽  
...  

Solar Physics ◽  
2021 ◽  
Vol 296 (1) ◽  
Author(s):  
N. Gopalswamy ◽  
J. Newmark ◽  
S. Yashiro ◽  
P. Mäkelä ◽  
N. Reginald ◽  
...  

AbstractWe report on the Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE) mission launched recently to observe the solar corona from $\approx 3$ ≈ 3  Rs to 15 Rs at four wavelengths (393.5, 405.0, 398.7, and 423.4 nm). The BITSE instrument is an externally occulted single stage coronagraph developed at NASA’s Goddard Space Flight Center in collaboration with the Korea Astronomy and Space Science Institute (KASI). BITSE used a polarization camera that provided polarization and total brightness images of size $1024 \times 1024$ 1024 × 1024 pixels. The Wallops Arc Second Pointer (WASP) system developed at NASA’s Wallops Flight Facility (WFF) was used for Sun pointing. The coronagraph and WASP were mounted on a gondola provided by WFF and launched from the Fort Sumner, New Mexico station of Columbia Scientific Balloon Facility (CSBF) on September 18, 2019. BITSE obtained 17,060 coronal images at a float altitude of $\approx \mbox{128,000}$ ≈ 128,000 feet ($\approx 39$ ≈ 39  km) over a period of $\approx 4$ ≈ 4  hrs. BITSE flight software was based on NASA’s core Flight System, which was designed to help develop flight quality software. We used EVTM (Ethernet Via Telemetry) to download science data during operations; all images were stored on board using flash storage. At the end of the mission, all data were recovered and analyzed. Preliminary analysis shows that BITSE imaged the solar minimum corona with the equatorial streamers on the east and west limbs. The narrow streamers observed by BITSE are in good agreement with the geometric properties obtained by the Solar and Heliospheric Observatory (SOHO) coronagraphs in the overlapping physical domain. In spite of the small signal-to-noise ratio ($\approx 14$ ≈ 14 ) we were able to obtain the temperature and flow speed of the western steamer. In the heliocentric distance range 4 – 7 Rs on the western streamer, we obtained a temperature of $\approx 1.0\pm 0.3$ ≈ 1.0 ± 0.3  MK and a flow speed of $\approx 260$ ≈ 260  km s−1 with a large uncertainty interval.


2021 ◽  
pp. 161-169
Author(s):  
Van-Nguyen Pham ◽  
Mwasinga Lusungu Josh ◽  
Duc-Tai Le ◽  
Sang-Won Lee ◽  
Hyunseung Choo

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 102542-102548
Author(s):  
Jong-Hyeok Park ◽  
Soyee Choi ◽  
Gihwan Oh ◽  
Sang-Won Lee
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document