In‐situ heating neutron‐ and X‐ray diffraction analyses for revealing structural evolution during post‐printing treatments of additive‐manufactured 316L stainless steel

Author(s):  
Megumi Kawasaki ◽  
Jae-Kyung Han ◽  
Xiaojing Liu ◽  
Yusuke Onuki ◽  
Yulia O. Kuzminova ◽  
...  
2019 ◽  
Author(s):  
Si Athena Chen ◽  
◽  
Peter Heaney ◽  
Jeffrey E. Post ◽  
Peter J. Eng ◽  
...  

2016 ◽  
Vol 4 (20) ◽  
pp. 7718-7726 ◽  
Author(s):  
Dorsasadat Safanama ◽  
Neeraj Sharma ◽  
Rayavarapu Prasada Rao ◽  
Helen E. A. Brand ◽  
Stefan Adams

In situ synchrotron X-ray diffraction study of the synthesis of solid-electrolyte Li1+xAlxGe2−x(PO4)3 (LAGP) from the precursor glass reveals that an initially crystallized dopant poor phase transforms into the Al-doped LAGP at 800 °C.


2020 ◽  
Author(s):  
Bikash Garai ◽  
Volodymyr Bon ◽  
Francesco Walenszus ◽  
Azat Khadiev ◽  
Dmitri Novikov ◽  
...  

Variation in the metal centres of M-M paddle-wheel SBU results in the formation of isostructural DUT-49(M) frameworks. However, the porosity of the framework was found to be different for each of the structures. While a high and moderate porosity was obtained for DUT-49(Cu) and DUT-49(Ni), respectively, other members of the series [DUT-49(M); M= Mn, Fe, Co, Zn, Cd] show very low porosity and shapes of the adsorption isotherms which is not expected for op phases of these MOFs. Investigation on those MOFs revealed that those frameworks undergo structural collapse during the solvent removal at the activation step. Thus, herein, we aimed to study the detailed structural transformations that are possibly occurring during the removal of the subcritical fluid from the framework.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 636 ◽  
Author(s):  
Xu ◽  
Wang ◽  
Chen ◽  
Qiao ◽  
Zhang ◽  
...  

The effect of rare earth oxides on the microstructure and corrosion behavior of laser-cladding coating on 316L stainless steel was investigated using hardness measurements, a polarization curve, electrochemical impedance spectroscopy (EIS), a salt spray test, X-ray diffraction, optical microscopy, and scanning electron microscopy (SEM). The results showed that the modification of rare earth oxides on the laser-cladding layer caused minor changes to its composition but refined the grains, leading to an increase in hardness. Electrochemical and salt spray studies indicated that the corrosion resistance of the 316L stainless steel could be improved by laser cladding, especially when rare earth oxides (i.e., CeO2 and La2O3) were added as a modifier.


Soft Matter ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 734-743 ◽  
Author(s):  
Pinzhang Chen ◽  
Jingyun Zhao ◽  
Yuanfei Lin ◽  
Jiarui Chang ◽  
Lingpu Meng ◽  
...  

The structural evolution of NR during stretching at −40 °C and in the strain–temperature space.


1997 ◽  
Vol 12 (4) ◽  
pp. 1131-1140 ◽  
Author(s):  
Kui Yao ◽  
Weiguang Zhu ◽  
Liangying Zhang ◽  
Xi Yao

Several ABO3perovskite ferroelectric crystals, PbTiO3, Pb(Zr, Ti)O3, and BaTiO3have beenin situgrown from amorphous gels with glass elements, and the structural evolution has been systematically investigated using x-ray diffraction (XRD), infrared spectra (IR), differential thermal analysis (DTA), thermogravimetric analysis (TGA), and dielectric measurements. It is found that in the Si-contained glass-ceramic systems, Si and B glass elements are incorporated into the crystalline structures, resulting in the variation of the crystallization process, change of lattice constant, and dielectric properties. Some metastable phases expressed by a general formula AxByGzOw(A = Pb and Ba; B = Zr and Ti; G for glass elements, especially for Si) have been observed and discussed.


2008 ◽  
Vol 373-374 ◽  
pp. 273-276 ◽  
Author(s):  
Yu Jiang Wang ◽  
Xin Xin Ma ◽  
Guang Wei Guo

The electrodeposition of aluminum on 316L stainless steel from a molten salts based on chloride has been studied. The surface morphology of the aluminum layer has been examined through scanning electron microscope (SEM) and the structure of the aluminum layer has been analyzed by X-ray diffraction (XRD). The thickness of the deposited aluminum layer has been measured by the method of cross-section scan. It has been suggested that a white, smooth, non-porous and a high purity aluminum layer can be obtained on 316L stainless steel from the ternary chloride molten salts (AlCl3 – NaCl - KCl). And the structure of the aluminum layer was single-phase.


Sign in / Sign up

Export Citation Format

Share Document