scholarly journals iRGD‐Liposomes Enhance Tumor Delivery and Therapeutic Efficacy of Antisense Oligonucleotide Drugs against Primary Prostate Cancer and Bone Metastasis

2021 ◽  
pp. 2100478
Author(s):  
Jibin Guan ◽  
Hong Guo ◽  
Tang Tang ◽  
Yihan Wang ◽  
Yushuang Wei ◽  
...  
2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e16576-e16576
Author(s):  
Marianna Kruithof-de Julio ◽  
Letizia Astrologo ◽  
Eugenio Zoni ◽  
Sofia Karkampouna ◽  
Peter C Gray ◽  
...  

e16576 Background: Prostate cancer is the second most common cancer in men worldwide. Lethality is normally associated with the consequences of metastasis rather than the primary tumor. In particular, bone is the most frequent site of metastasis and once prostate tumor cells are engrafted in the skeleton, curative therapy is no longer possible. Bone morphogenetic proteins (BMPs) play a critical role in bone physiology and pathology. However, little is known about the role of BMP9 and its signaling receptors, ALK1 and ALK2, in prostate cancer and bone metastasis. In this context, we investigate the impact of BMP9 on primary prostate cancer and derived bone metastasis. Methods: The human ALK1 extracellular domain (ECD) binds BMP9 and BMP10 with high affinity. In order to study the effect of BMP9 in vitro and in vivo we use a soluble chimeric protein, consisting of ALK1 ECD fused to human Fc (ALK1Fc), for preventing the activation of endogenous signaling. ALK1Fc sequesters BMP9 and BMP10, preserving the activation of ALK1 through other ligands. Results: We show that ALK1Fc reduces BMP9-mediated signaling and decreases proliferation of highly metastatic and tumor initiating human prostate cancer cells in vitro. In line with these observations, we demonstrate that ALK1Fc reduces tumor growth in vivo in an orthotopic transplantation model. The propensity of the primary prostate cancer to metastasize to the bone is also investigated. In particular, we report how the ALK1Fc influences the prostate cancer cells in vitro and in vivo when these are probed in different bone settings (co-culture with bone cells and intraosseous transplantation in mice). Conclusions: Our study provides the first demonstration that ALK1Fc inhibits prostate cancer cells growth identifying BMP9 as a putative therapeutic target and ALK1Fc as a potential therapy. All together, these findings justify the ongoing clinical development of drugs blocking ALK1 and ALK2 receptor activity.


2021 ◽  
Vol 43 (1) ◽  
pp. 103-115
Author(s):  
Atsushi TOYOFUKU ◽  
Yugo IHA ◽  
Yuki KOREEDA ◽  
Kohei YOSHIDA ◽  
Aiichiro HIGURE ◽  
...  

2021 ◽  
Author(s):  
Jibin Guan ◽  
Hong Guo ◽  
Tang Tang ◽  
Yihan Wang ◽  
Yushuang Wei ◽  
...  

Nucleotide-based drugs, such as antisense oligonucleotides (ASOs), have unique advantages in treating human diseases as they provide virtually unlimited ability to target any gene. However, their clinical translation faces many challenges, one of which is poor delivery to the target tissue in vivo. This problem is particularly evident in solid tumors. Here, we functionalized liposomes with a tumor-homing and -penetrating peptide, iRGD, as a carrier of an ASO against androgen receptor (AR) for prostate cancer treatment. The iRGD-liposomes exhibited a high loading efficiency of AR-ASO, and an efficient knockdown of AR gene products was achieved in vitro, including AR splice variants. In vivo, iRGD-liposomes significantly increased AR-ASO accumulation in the tumor tissue and decreased AR expression relative to free ASOs in prostate tumors established as subcutaneous xenografts. Similar results were obtained with intra-tibial xenografts modeling metastasis to bones, the predominant site of metastasis for prostate cancer. In treatment studies, iRGD-liposomes markedly improved the AR-ASO efficacy in suppressing the growth of both subcutaneous xenografts and intra-tibial xenografts. The inhibitory effect on tumor growth was also significantly prolonged by the delivery of the AR-ASO in the iRGD-liposomes. Meanwhile, iRGD-liposomes did not increase ASO accumulation or toxicity in healthy organs. Overall, we provide here a delivery system that can significantly increase ASO accumulation and efficacy in solid tumors. These benefits are achieved without significant side effects, providing a way to increase the antitumor efficacy of ASOs.


The Prostate ◽  
2009 ◽  
Vol 69 (7) ◽  
pp. 727-736 ◽  
Author(s):  
Xiaotun Zhang ◽  
Wenbin Wang ◽  
Lawrence D. True ◽  
Robert L. Vessella ◽  
Thomas K. Takayama

2019 ◽  
Vol 216 (12) ◽  
pp. 2883-2899 ◽  
Author(s):  
Jinlu Dai ◽  
June Escara-Wilke ◽  
Jill M. Keller ◽  
Younghun Jung ◽  
Russell S. Taichman ◽  
...  

Prostate cancer (PCa) metastasizes selectively to bone through unknown mechanisms. In the current study, we identified exosome-mediated transfer of pyruvate kinase M2 (PKM2) from PCa cells into bone marrow stromal cells (BMSCs) as a novel mechanism through which primary tumor-derived exosomes promote premetastatic niche formation. We found that PKM2 up-regulates BMSC CXCL12 production in a HIF-1α-dependent fashion, which subsequently enhances PCa seeding and growth in the bone marrow. Furthermore, serum-derived exosomes from patients with either primary PCa or PCa metastasis, as opposed to healthy men, reveal that increased exosome PKM2 expression is associated with metastasis, suggesting clinical relevance of exosome PKM2 in PCa. Targeting the exosome-induced CXCL12 axis diminished exosome-mediated bone metastasis. In summary, primary PCa cells educate the bone marrow to create a premetastatic niche through primary PCa exosome-mediated transfer of PKM2 into BMSCs and subsequent up-regulation of CXCL12. This novel mechanism indicates the potential for exosome PKM2 as a biomarker and suggests therapeutic targets for PCa bone metastasis.


2007 ◽  
Vol 177 (4S) ◽  
pp. 156-156
Author(s):  
Andrea Salonia ◽  
Pierre I. Karakiewicz ◽  
Andrea Gallina ◽  
Alberto Briganti ◽  
Tommaso C. Camerata ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 223-223
Author(s):  
Sreenivasa R. Chinni ◽  
Hamilto Yamamoto ◽  
Zhong Dong ◽  
Aaron Sabbota ◽  
Sanaa Nabha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document