Dynamic Pressure Sensitive Adhesion in Nematic Phase of Liquid Crystal Elastomers

2021 ◽  
pp. 2110190
Author(s):  
Hiro J. Farre‐Kaga ◽  
Mohand O. Saed ◽  
Eugene M. Terentjev
2017 ◽  
Author(s):  
Niamh Mac Fhionnlaoich ◽  
Stephen Schrettl ◽  
Nicholas B. Tito ◽  
Ye Yang ◽  
Malavika Nair ◽  
...  

The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase leads to the assembly of individual nanometre-sized particles into arrays of micrometre-sized aggregates, whose size and characteristic spacing can be tuned by varying the cooling rate. This fully reversible process offers hierarchical control over structural order on the molecular, nanoscopic, and microscopic level and is an interesting model system for the programmable patterning of nanocomposites with access to micrometre-sized periodicities.


2021 ◽  
pp. 2104702
Author(s):  
Kyohei Hisano ◽  
Seiya Kimura ◽  
Kyosun Ku ◽  
Tomoki Shigeyama ◽  
Norihisa Akamatsu ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 831
Author(s):  
Davide Revignas ◽  
Alberta Ferrarini

In the past decade, much evidence has been provided for an unusually low cost for bend deformations in the nematic phase of bent-core mesogens and bimesogens (liquid crystal dimers) having a bent shape on average. Recently, an analogous effect was observed for the splay mode of bent-core mesogens with an acute apical angle. Here, we present a systematic computational investigation of the Frank elastic constants of nematics made of V-shaped particles, with bend angles ranging from acute to obtuse. We show that by tuning this angle, the elastic behavior switches from bend dominated (K33>K11) to splay dominated (K11>K33), with anomalously low values of the splay and the bend constant, respectively. This is related to a change in the shape polarity of particles, which is associated with the emergence of polar order, longitudinal for splay and transversal for bend deformations. Crucial to this study is the use of a recently developed microscopic elastic theory, able to account for the interplay of mesogen morphology and director deformations.


Soft Matter ◽  
2021 ◽  
Author(s):  
Angel Martinez ◽  
Arul Clement ◽  
Junfeng Gao ◽  
Julia Kocherzat ◽  
Mohsen Tabrizi ◽  
...  

The effect of chain extender structure and composition on the properties of liquid crystal elastomers (LCE) is presented. Compositions are optimized to design work-dense liquid metal LCE composites that are operated with 100 mW power.


Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3128-3136
Author(s):  
Suzuka Okamoto ◽  
Shinichi Sakurai ◽  
Kenji Urayama

Stretching angle for a main-chain liquid crystal elastomer has pronounced effects on the width of the stress plateau as well as the ultimate elongation, while it has no effect on the plateau height.


2021 ◽  
Author(s):  
Ling Chen ◽  
Hari Bisoyi ◽  
Yinliang Huang ◽  
Shuai Huang ◽  
Meng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document