Implantable Cardiac Kirigami‐Inspired Lead‐Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film

2021 ◽  
pp. 2002100
Author(s):  
Zhe Xu ◽  
Congran Jin ◽  
Andrew Cabe ◽  
Danny Escobedo ◽  
Aleksandra Gruslova ◽  
...  
2016 ◽  
Vol 76-77 ◽  
pp. 823-832 ◽  
Author(s):  
Arkadiusz Syta ◽  
Christopher R. Bowen ◽  
H. Alicia Kim ◽  
Andrzej Rysak ◽  
Grzegorz Litak

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 198 ◽  
Author(s):  
Parthiban Pazhamalai ◽  
Vimal Kumar Mariappan ◽  
Surjit Sahoo ◽  
Woo Young Kim ◽  
Young Sun Mok ◽  
...  

The development of polymer-based devices has attracted much attention due to their miniaturization, flexibility, lightweight and sustainable power sources with high efficiency in the field of wearable/portable electronics, and energy system. In this work, we proposed a polyvinylidene fluoride (PVDF)-based composite matrix for both energy harvesting and energy storage applications. The physicochemical characterizations, such as X-ray diffraction, laser Raman, and field-emission scanning electron microscopy (FE-SEM) analyses, were performed for the electrospun PVDF/sodium niobate and PVDF/reduced graphene oxide composite film. The electrospun PVDF/sodium niobate nanofibrous mat has been utilized for the energy harvester which shows an open circuit voltage of 40 V (peak to peak) at an applied compressive force of 40 N. The PVDF/reduced graphene oxide composite film acts as the electrode for the symmetric supercapacitor (SSC) device fabrication and investigated for their supercapacitive properties. Finally, the self-charging system has been assembled using PVDF/sodium niobate (energy harvester), and PVDF/reduced graphene oxide SSC (energy storage) and the self-charging capability is investigated. The proposed self-charging system can create a pathway for the all-polymer based composite high-performance self-charging system.


2020 ◽  
Vol 12 (30) ◽  
pp. 34170-34179 ◽  
Author(s):  
Zhe Xu ◽  
Congran Jin ◽  
Andrew Cabe ◽  
Danny Escobedo ◽  
Nanjing Hao ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8441
Author(s):  
Shao-En Chen ◽  
Ray-Yeng Yang ◽  
Zeng-Hui Qiu ◽  
Chia-Che Wu

In this study, a plucking-driven piezoelectric wave energy harvester (PDPWEH) consisted of a buoy, a gear train frequency up-conversion mechanism, and an array of piezoelectric cantilever beams was developed. The gear train frequency up-conversion mechanism with compact components included a rack, three gears, and a geared cam provide less energy loss to improve electrical output. Six individual piezoelectric composite beams were plucked by geared cam to generate electrical power in the array of piezoelectric cantilever beams. A sol-gel method was used to create the piezoelectric composite beams. To investigate PDPWEH, a mathematical model based on the Euler–Bernoulli beam theory was derived. The developed PDPWEH was tested in a wave flume. The wave heights were set to 100 and 75 mm, the wave periods were set to 1.0, 1.5, and 2.0 s. The maximum output voltage of the measured value was 12.4 V. The maximum RMS voltage was 5.01 V, which was measured by connecting to an external 200 kΩ resistive load. The maximum average electrical power was 125.5 μw.


2021 ◽  
Author(s):  
Lili Wang ◽  
Lulu Liu ◽  
Xiaobiao Shan ◽  
Wenyi Fu

This paper presents a solvothermal method to produce polyvinylidene fluoride (PVDF) composite films doped with dopamine modified nano-silica (dopamine@SiO2) particles. Combined results of FTIR, SEM and TEM confirm that dopamine...


Vibration ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 123-137 ◽  
Author(s):  
Germán Martínez-Ayuso ◽  
Hamed Haddad Khodaparast ◽  
Yan Zhang ◽  
Christopher Bowen ◽  
Michael Friswell ◽  
...  

In this paper, a finite element model is coupled to an homogenisation theory in order to predict the energy harvesting capabilities of a porous piezoelectric energy harvester. The harvester consists of a porous piezoelectric patch bonded to the root of a cantilever beam. The material properties of the porous piezoelectric material are estimated by the Mori–Tanaka homogenisation method, which is an analytical method that provides the material properties as a function of the porosity of the piezoelectric composite. These material properties are then used in a finite element model of the harvester that predicts the deformation and voltage output for a given base excitation of the cantilever beam, onto which the piezoelectric element is bonded. Experiments are performed to validate the numerical model, based on the fabrication and testing of several demonstrators composed of porous piezoelectric patches with different percentages of porosity bonded to an aluminium cantilever beam. The electrical load is simulated using a resistor and the voltage across the resistor is measured to estimate the energy generated. The beam is excited in a range of frequencies close to the first and second modes using base excitation. The effects of the porosity and the assumptions made for homogenisation are discussed.


Sign in / Sign up

Export Citation Format

Share Document