Biomaterial Wettability Affects Fibrin Clot Structure and Fibrinolysis

2021 ◽  
pp. 2100988
Author(s):  
Alexander M. Ruhoff ◽  
Jun Ki Hong ◽  
Lingzi Gao ◽  
Jasneil Singh ◽  
Clara Tran ◽  
...  
Keyword(s):  
2014 ◽  
Vol 112 (08) ◽  
pp. 287-296 ◽  
Author(s):  
Magdalena Celińska-Löwenhoff ◽  
Teresa Iwaniec ◽  
Agnieszka Padjas ◽  
Jacek Musiał ◽  
Anetta Undas

SummaryWe tested the hypothesis that plasma fibrin clot structure/function is unfavourably altered in patients with antiphospholipid syndrome (APS). Ex vivo plasma clot permeability, turbidity and susceptibility to lysis were determined in 126 consecutive patients with APS enrolled five months or more since thrombotic event vs 105 controls. Patients with both primary and secondary APS were characterised by 11% lower clot permeability (p<0.001), 4.8% shorter lag phase (p<0.001), 10% longer clot lysis time (p<0.001), and 4.7% higher maximum level of D-dimer released from clots (p=0.02) as compared to the controls. Scanning electron microscopy images confirmed denser fibrin networks composed of thinner fibres in APS. Clots from patients with “triple-antibody positivity” were formed after shorter lag phase (p=0.019) and were lysed at a slower rate (p=0.004) than in the remainder. Clots from APS patients who experienced stroke and/or myocardial infarction were 8% less permeable (p=0.01) and susceptible to lysis (10.4% longer clot lysis time [p=0.006] and 4.5% slower release of D-dimer from clots [p=0.01]) compared with those following venous thromboembolism alone. Multivariate analysis adjusted for potential confounders showed that in APS patients, lupus anticoagulant and “triple-positivity” were the independent predictors of clot permeability, while “triple-positivity” predicted lysis time. We conclude that APS is associated with prothrombotic plasma fibrin clot phenotype, with more pronounced abnormalities in arterial thrombosis. Molecular background for this novel prothrombotic mechanism in APS remains to be established.


Circulation ◽  
2002 ◽  
Vol 106 (15) ◽  
pp. 1938-1942 ◽  
Author(s):  
Joseph D. Mills ◽  
Robert A.S. Ariëns ◽  
Michael W. Mansfield ◽  
Peter J. Grant

2017 ◽  
Vol 117 (09) ◽  
pp. 1739-1749 ◽  
Author(s):  
Agnieszka Janion-Sadowska ◽  
Joanna Natorska ◽  
Jakub Siudut ◽  
Michal Zabczyk ◽  
Andrzej Stanisz ◽  
...  

SummaryWe sought to investigate whether the G20210A prothrombin mutation modifies plasma fibrin clot properties in patients after venous thromboembolism (VTE) and how rivaroxaban treatment affects these alterations. We studied 34 prothrombin mutation heterozygous carriers and sex- and age-matched 34 non-carriers, all at least three months since the first VTE episode, before and during treatment with rivaroxaban. Clot permeability (Ks) and clot lysis time (CLT) with or without elimination of thrombin activatable fibrinolysis inhibitor (TAFI) were assessed at baseline, 2–6 hours (h) after and 20–25 h after intake of rivaroxaban (20 mg/day). At baseline, the prothrombin mutation group formed denser clots (Ks −12 %, p=0.0006) and had impaired fibrinolysis (CLT +14 %, p=0.004, and CLT-TAFI +13 %, p=0.03) compared with the no mutation group and were similar to those observed in 15 healthy unrelated prothrombin mutation carriers. The G20210A prothrombin mutation was the independent predictor for Ks and CLT before rivaroxaban intake. At 2–6 h after rivaroxaban intake, clot properties improved in both G20210A carriers and non-carriers (Ks +38 %, and +37 %, CLT −25 % and −25 %, CLT-TAFI −20 % and −24 %, respectively, all p<0.001), but those parameters were worse in the prothrombin mutation group (Ks −12.8 %, CLT +17 %, CLT-TAFI +13 %, all p<0.001). Rivaroxaban concentration correlated with fibrin clot properties. After 20–25 h since rivaroxaban intake most clot properties returned to baseline. Rivaroxaban-related differences in clot structure were confirmed by scanning electron microscopy images. In conclusion, rivaroxaban treatment, though improves fibrin clot properties, cannot abolish more prothrombotic fibrin clot phenotype observed in prothrombin mutation carriers following VTE.


2009 ◽  
Vol 49 (4) ◽  
pp. 1088-1089 ◽  
Author(s):  
Neeraj Bhasin ◽  
Duncan J. Parry ◽  
D. Julian A. Scott ◽  
Robert A.S. Ariëns ◽  
Peter J. Grant ◽  
...  

2013 ◽  
Vol 109 (02) ◽  
pp. 221-228 ◽  
Author(s):  
Keisuke Soya ◽  
Fumiko Terasawa ◽  
Nobuo Okumura

SummaryFibrin polymerisation is mediated by interactions between knobs ‘A’ and ‘B’ exposed by thrombin cleavage, and holes ‘a’ and ‘b’. We demonstrated markedly delayed thrombin-catalysed fibrin polymerisation, through B:b interactions alone, of recombinant γD364H-fibrinogen with impaired hole ‘a’. To determine whether recombinant variant fibrinogens with no release of fibrinopeptide A (FpA) polymerise similarly to γD364H-fibrinogen, we examined two variant fibrinogens with substitutions altering knob ‘A’, Aα17A- and Aα17C-fibrinogen. We examined thrombin- or batroxobin-catalysed fibrinopeptide release by HPLC, fibrin clot formation by turbidity and fibrin clot structure by scanning electron microscopy (SEM) and compared the results of the variants with those for γD364H-fibrinogen. Thrombin-catalysed FpA release of Aα17A-fibrinogen was substantially delayed and none observed for Aα17C-fibrinogen; fibrinopeptide B (FpB) release was delayed for all variants. All variant fibrinogens showed substantially impaired thrombin-catalysed polymerisation; for Aα17A-fibrinogen it was delayed less, and for Aα17C more than for γD364H-fibrinogen. No variants polymerised with batroxobin, which exposed only knob ‘A’. The inhibition of variant fibrinogens’ polymerisation was dose-dependent on the concentration of either GPRP or GHRP, and both peptides that block holes ‘b’. SEM showed that the variant clots from Aα17A- and γD364H-fibrinogen had uniform, ordered fibres, thicker than normal, whereas Aα17C-fibrinogen formed less organised clots with shorter, thinner, and tapered ends. These results demonstrate that FpA release per se is necessary for effective B:b interactions during polymerisation of variant fibrinogens with impaired A:a interactions.


2016 ◽  
Vol 116 (09) ◽  
pp. 408-409 ◽  
Author(s):  
Helen Philippou ◽  
Andrew D. Blann ◽  
Yee Cheng Lau ◽  
Lewis J. Hardy ◽  
Gregory Y. H. Lip

Note: The review process for this manuscript was fully handled by Christian Weber, Editor in Chief.


2018 ◽  
pp. 31-49 ◽  
Author(s):  
Stephen R. Baker ◽  
Robert A.S. Ariëns

2021 ◽  
Author(s):  
Malgorzata Wygrecka ◽  
Anna Birnhuber ◽  
Benjamin Seeliger ◽  
Laura Michalick ◽  
Oleg Pak ◽  
...  

The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. Here, we demonstrate altered levels of factor XII (FXII) and its activation products in two independent cohorts of critically ill COVID-19 patients in comparison to patients suffering from severe acute respiratory distress syndrome due to influenza virus (ARDS-influenza). Compatible with this data, we report rapid consumption of FXII in COVID-19, but not in ARDS-influenza, plasma. Interestingly, the kaolin clotting time was not prolonged in COVID-19 as compared to ARDS-influenza. Using confocal and electron microscopy, we show that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggers formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, we observed clot lysis in 30% of COVID-19 patients and 84% of ARDS influenza subjects. Analysis of lung tissue sections revealed wide-spread extra- and intra-vascular compact fibrin deposits in COVID-19. Together, our results indicate that elevated fibrinogen levels and increased FXII activation rate promote thrombosis and thrombolysis resistance via enhanced thrombus formation and stability in COVID-19.


TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e94-e103
Author(s):  
Yanan Zong ◽  
Aleksandra Antovic ◽  
Nida Mahmoud Hourani Soutari ◽  
Jovan Antovic ◽  
Iva Pruner

AbstractDevelopment of inhibitors to factor VIII (FVIII) occurs in approximately 30% of severe hemophilia A (HA) patients. These patients are treated with bypassing agents (activated prothrombin complex concentrate [aPCC] and recombinant activated FVII-rFVIIa). Recently, a bispecific FIX/FIXa- and FX/FXa-directed antibody (emicizumab) has been approved for the treatment of HA patients with inhibitors. However, the data from clinical studies imply that coadministration of emicizumab and bypassing agents, especially aPCC, could have a thrombotic effect.This study was aimed to address the question of potential hypercoagulability of emicizumab and bypassing agents' coadministration, we have investigated fibrin clot formation and structure in the in vitro model of severe HA after adding sequence-identical analogue (SIA) of emicizumab and bypassing agents.Combined overall hemostasis potential (OHP) and fibrin clot turbidity assay was performed in FVIII-deficient plasma after addition of different concentrations of SIA, rFVIIa, and aPCC. Pooled normal plasma was used as control. The fibrin clots were analyzed by scanning electron microscopy (SEM).OHP and turbidity parameters improved with the addition of aPCC, while therapeutic concentrations of rFVIIa did not show substantial improvement. SIA alone and in combination with rFVIIa or low aPCC concentration improved OHP and turbidity parameters and stabilized fibrin network, while in combination with higher concentrations of aPCC expressed hypercoagulable pattern and generated denser clots.Our in vitro model suggests that combination of SIA and aPCC could potentially be prothrombotic, due to hypercoagulable changes in fibrin clot turbidity and morphology. Additionally, combination of SIA and rFVIIa leads to the formation of stable clots similar to normal fibrin clots.


Blood ◽  
2011 ◽  
Vol 118 (14) ◽  
pp. 3942-3951 ◽  
Author(s):  
Joke Konings ◽  
José W. P. Govers-Riemslag ◽  
Helen Philippou ◽  
Nicola J. Mutch ◽  
Julian I. Borissoff ◽  
...  

Abstract Recent data indicate an important contribution of coagulation factor (F)XII to in vivo thrombus formation. Because fibrin structure plays a key role in clot stability and thrombosis, we hypothesized that FXII(a) interacts with fibrin(ogen) and thereby regulates clot structure and function. In plasma and purified system, we observed a dose-dependent increase in fibrin fiber density and decrease in turbidity, reflecting a denser structure, and a nonlinear increase in clot stiffness with FXIIa. In plasma, this increase was partly independent of thrombin generation, as shown in clots made in prothrombin-deficient plasma initiated with snake venom enzyme and in clots made from plasma deficient in FXII and prothrombin. Purified FXII and α-FXIIa, but not β-FXIIa, bound to purified fibrinogen and fibrin with nanomolar affinity. Immunostaining of human carotid artery thrombi showed that FXII colocalized with areas of dense fibrin deposition, providing evidence for the in vivo modulation of fibrin structure by FXIIa. These data demonstrate that FXIIa modulates fibrin clot structure independently of thrombin generation through direct binding of the N-terminus of FXIIa to fibrin(ogen). Modification of fibrin structure by FXIIa represents a novel physiologic role for the contact pathway that may contribute to the pathophysiology of thrombosis.


Sign in / Sign up

Export Citation Format

Share Document