Altered fibrin clot structure contributes to thrombosis risk in severe COVID-19

2021 ◽  
Author(s):  
Malgorzata Wygrecka ◽  
Anna Birnhuber ◽  
Benjamin Seeliger ◽  
Laura Michalick ◽  
Oleg Pak ◽  
...  

The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. Here, we demonstrate altered levels of factor XII (FXII) and its activation products in two independent cohorts of critically ill COVID-19 patients in comparison to patients suffering from severe acute respiratory distress syndrome due to influenza virus (ARDS-influenza). Compatible with this data, we report rapid consumption of FXII in COVID-19, but not in ARDS-influenza, plasma. Interestingly, the kaolin clotting time was not prolonged in COVID-19 as compared to ARDS-influenza. Using confocal and electron microscopy, we show that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggers formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, we observed clot lysis in 30% of COVID-19 patients and 84% of ARDS influenza subjects. Analysis of lung tissue sections revealed wide-spread extra- and intra-vascular compact fibrin deposits in COVID-19. Together, our results indicate that elevated fibrinogen levels and increased FXII activation rate promote thrombosis and thrombolysis resistance via enhanced thrombus formation and stability in COVID-19.

2014 ◽  
Vol 112 (08) ◽  
pp. 287-296 ◽  
Author(s):  
Magdalena Celińska-Löwenhoff ◽  
Teresa Iwaniec ◽  
Agnieszka Padjas ◽  
Jacek Musiał ◽  
Anetta Undas

SummaryWe tested the hypothesis that plasma fibrin clot structure/function is unfavourably altered in patients with antiphospholipid syndrome (APS). Ex vivo plasma clot permeability, turbidity and susceptibility to lysis were determined in 126 consecutive patients with APS enrolled five months or more since thrombotic event vs 105 controls. Patients with both primary and secondary APS were characterised by 11% lower clot permeability (p<0.001), 4.8% shorter lag phase (p<0.001), 10% longer clot lysis time (p<0.001), and 4.7% higher maximum level of D-dimer released from clots (p=0.02) as compared to the controls. Scanning electron microscopy images confirmed denser fibrin networks composed of thinner fibres in APS. Clots from patients with “triple-antibody positivity” were formed after shorter lag phase (p=0.019) and were lysed at a slower rate (p=0.004) than in the remainder. Clots from APS patients who experienced stroke and/or myocardial infarction were 8% less permeable (p=0.01) and susceptible to lysis (10.4% longer clot lysis time [p=0.006] and 4.5% slower release of D-dimer from clots [p=0.01]) compared with those following venous thromboembolism alone. Multivariate analysis adjusted for potential confounders showed that in APS patients, lupus anticoagulant and “triple-positivity” were the independent predictors of clot permeability, while “triple-positivity” predicted lysis time. We conclude that APS is associated with prothrombotic plasma fibrin clot phenotype, with more pronounced abnormalities in arterial thrombosis. Molecular background for this novel prothrombotic mechanism in APS remains to be established.


2017 ◽  
Vol 117 (09) ◽  
pp. 1739-1749 ◽  
Author(s):  
Agnieszka Janion-Sadowska ◽  
Joanna Natorska ◽  
Jakub Siudut ◽  
Michal Zabczyk ◽  
Andrzej Stanisz ◽  
...  

SummaryWe sought to investigate whether the G20210A prothrombin mutation modifies plasma fibrin clot properties in patients after venous thromboembolism (VTE) and how rivaroxaban treatment affects these alterations. We studied 34 prothrombin mutation heterozygous carriers and sex- and age-matched 34 non-carriers, all at least three months since the first VTE episode, before and during treatment with rivaroxaban. Clot permeability (Ks) and clot lysis time (CLT) with or without elimination of thrombin activatable fibrinolysis inhibitor (TAFI) were assessed at baseline, 2–6 hours (h) after and 20–25 h after intake of rivaroxaban (20 mg/day). At baseline, the prothrombin mutation group formed denser clots (Ks −12 %, p=0.0006) and had impaired fibrinolysis (CLT +14 %, p=0.004, and CLT-TAFI +13 %, p=0.03) compared with the no mutation group and were similar to those observed in 15 healthy unrelated prothrombin mutation carriers. The G20210A prothrombin mutation was the independent predictor for Ks and CLT before rivaroxaban intake. At 2–6 h after rivaroxaban intake, clot properties improved in both G20210A carriers and non-carriers (Ks +38 %, and +37 %, CLT −25 % and −25 %, CLT-TAFI −20 % and −24 %, respectively, all p<0.001), but those parameters were worse in the prothrombin mutation group (Ks −12.8 %, CLT +17 %, CLT-TAFI +13 %, all p<0.001). Rivaroxaban concentration correlated with fibrin clot properties. After 20–25 h since rivaroxaban intake most clot properties returned to baseline. Rivaroxaban-related differences in clot structure were confirmed by scanning electron microscopy images. In conclusion, rivaroxaban treatment, though improves fibrin clot properties, cannot abolish more prothrombotic fibrin clot phenotype observed in prothrombin mutation carriers following VTE.


Blood ◽  
2011 ◽  
Vol 118 (14) ◽  
pp. 3942-3951 ◽  
Author(s):  
Joke Konings ◽  
José W. P. Govers-Riemslag ◽  
Helen Philippou ◽  
Nicola J. Mutch ◽  
Julian I. Borissoff ◽  
...  

Abstract Recent data indicate an important contribution of coagulation factor (F)XII to in vivo thrombus formation. Because fibrin structure plays a key role in clot stability and thrombosis, we hypothesized that FXII(a) interacts with fibrin(ogen) and thereby regulates clot structure and function. In plasma and purified system, we observed a dose-dependent increase in fibrin fiber density and decrease in turbidity, reflecting a denser structure, and a nonlinear increase in clot stiffness with FXIIa. In plasma, this increase was partly independent of thrombin generation, as shown in clots made in prothrombin-deficient plasma initiated with snake venom enzyme and in clots made from plasma deficient in FXII and prothrombin. Purified FXII and α-FXIIa, but not β-FXIIa, bound to purified fibrinogen and fibrin with nanomolar affinity. Immunostaining of human carotid artery thrombi showed that FXII colocalized with areas of dense fibrin deposition, providing evidence for the in vivo modulation of fibrin structure by FXIIa. These data demonstrate that FXIIa modulates fibrin clot structure independently of thrombin generation through direct binding of the N-terminus of FXIIa to fibrin(ogen). Modification of fibrin structure by FXIIa represents a novel physiologic role for the contact pathway that may contribute to the pathophysiology of thrombosis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 403-403
Author(s):  
Stephanie A. Smith ◽  
James H. Morrissey

Abstract Introduction: Inorganic polyphosphate (polyP) is a negatively charged polymer of phosphate units linked by high energy phosphoanhydride bonds. Dense granules of human platelets contain polyP which is released in response to thrombin stimulation. We recently reported that polyphosphate is a potent hemostatic regulator, accelerating blood clotting by activating the contact pathway and promoting the activation of factor V. Our previous studies found that polyP did not affect the time to clot formation when plasma was clotted with thrombin, however, suggesting that polyP exerts its procoagulant actions upstream of thrombin. We now report that polyP enhances fibrin clot structure. Methods: Purified fibrinogen and polyP were preincubated for 15 min in multiwell plates in buffer containing CaCl2, after which clotting was initiated by adding 0.1 to 8 nM thrombin and fibrin clot formation was evaluated by quantifying the change in turbidity (A405). Mass-length ratios were calculated from scans of A400 to A800. The effect of polyP on fibrinolysis was examined by adding 8 nM plasmin to the reaction mixtures immediately prior to thrombin. Scanning electron microscopy (SEM) was employed to visualize clot structure, and time courses of covalent fibrin cross-linking were assessed by SDS-PAGE. Results: PolyP had no effect on time to clot formation, but clots formed in the presence of polyP had markedly (up to threefold) higher turbidity than clots formed in the absence of polyP (see figure), irrespective of thrombin concentration. The increased turbidity in the presence of polyP was calcium-dependent and was enhanced when fibrinogen, CaCl2, and polyP were preincubated for up to 15 min prior to initiation of clotting with thrombin. PolyP increased the mass-length ratio of fibrin, and SEM confirmed that fibers formed with polyP were thicker than those formed without polyP. The ability of polyP to enhance fibrin clot turbidity was independent of factor XIIIa activity, and polyP did not alter the rate or extent of covalent fibrin cross-linking by factor XIIIa. When plasmin was included in clotting reactions containing polyP, mean times to 50% clot lysis were 28.5 ± 0.8 min for clots without polyP but 120.4 ± 5.6 min for clots with polyP. Conclusions: PolyP alters polymerization of fibrin, resulting in fibers of higher mass-length ratio that are lysed more slowly. This effect is calcium-dependent and is enhanced by preincubation of fibrinogen with calcium and polyP. Release of polyP from activated platelets or infectious microorganisms may therefore enhance fibrin clot structure. Figure Figure


2015 ◽  
Vol 35 (01) ◽  
pp. 25-33 ◽  
Author(s):  
K. Hess

SummaryPatients with diabetes are at increased risk of cardiovascular morbidity and mortality. While arteriosclerotic lesions have long been recognized as the underlying cause more recent studies suggest that alterations of the blood are also critically involved. Following plaque rupture, adherence of platelets is followed by the formation of a cross-linked fibrin clot. Patients with diabetes exhibit a prothrombotic milieu consisting of hyper reactive platelets, a tight and rigid clot structure which is due to up-regulation of coagulation factors and prolongation of clot lysis. Metabolic alterations as well as inflammatory processes, which are up–regulated in diabetes, are thought to be the main underlying causes. More recently, the complement cascade has emerged as a potential new player in this context with several complement components directly influencing both platelet function and coagulation.This review provides an overview concerning the changes that lead to alterations of platelet function and clot structure in diabetes.


Author(s):  
Michał Ząbczyk ◽  
Joanna Natorska ◽  
Agnieszka Janion-Sadowska ◽  
Agnieszka Metzgier-Gumiela ◽  
Mateusz Polak ◽  
...  

Abstract Background Prothrombotic fibrin clot properties are associated with higher early mortality risk in acute pulmonary embolism (PE) patients. It is unknown whether different types of PE are associated with particular clot characteristics. Methods We assessed 126 normotensive, noncancer acute PE patients (median age: 59 [48–70] years; 52.4% males), who were categorized into central versus peripheral PE with or without concomitant deep vein thrombosis (DVT). Plasma fibrin clot permeability (K s), clot lysis time (CLT), thrombin generation, platelet-derived markers, and fibrinolytic parameters were measured on admission. Plasma fibrin clot morphology was assessed by scanning electron microscopy (SEM). Results Patients with central PE (n = 76; 60.3%) compared with peripheral PE (n = 50; 39.7%) had 17.8% higher K s and 14.3% shortened CLT (both p < 0.01 after adjustment for potential confounders including fibrinogen), with no differences between segmental and subsegmental PE. SEM analysis demonstrated larger fibrin fiber diameter and pore size in central PE compared with peripheral PE (both p < 0.01). For isolated PE, there was 23.3% higher K s in central PE than in peripheral PE (n = 24; 19%) with no differences in other variables. Central PE combined with DVT (n = 45; 35.7%), as compared with central isolated PE (n = 31; 24.6%), was associated with shortened CLT (all p < 0.05). Conclusion Our findings suggest that looser fibrin networks composed of thicker fibers with increased susceptibility to lysis characterize patients with central PE, suggesting that fibrin clot phenotype affects the size of thrombi occluding the pulmonary arteries, highlighting the role of fibrin structures in thrombus formation and stability.


2021 ◽  
Vol 22 (22) ◽  
pp. 12537
Author(s):  
Nikoletta Pechlivani ◽  
Katherine J. Kearney ◽  
Ramzi A. Ajjan

Thrombus formation remains a major cause of morbidity and mortality worldwide. Current antiplatelet and anticoagulant therapies have been effective at reducing vascular events, but at the expense of increased bleeding risk. Targeting proteins that interact with fibrinogen and which are involved in hypofibrinolysis represents a more specific approach for the development of effective and safe therapeutic agents. The antifibrinolytic proteins alpha-2 antiplasmin (α2AP), thrombin activatable fibrinolysis inhibitor (TAFI), complement C3 and plasminogen activator inhibitor-2 (PAI-2), can be incorporated into the fibrin clot by FXIIIa and affect fibrinolysis by different mechanisms. Therefore, these antifibrinolytic proteins are attractive targets for the development of novel therapeutics, both for the modulation of thrombosis risk, but also for potentially improving clot instability in bleeding disorders. This review summarises the main properties of fibrinogen-bound antifibrinolytic proteins, their effect on clot lysis and association with thrombotic or bleeding conditions. The role of these proteins in therapeutic strategies targeting the fibrinolytic system for thrombotic diseases or bleeding disorders is also discussed.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1218-1218
Author(s):  
Amanda P. Waller ◽  
Katelyn J Wolfgang ◽  
Bryce A. Kerlin

Abstract Introduction Nephrotic syndrome (NS) is characterized by massive proteinuria (secondary to podocyte injury), hypoalbuminemia, and edema. Importantly, NS is associated with a complex acquired hypercoagulopathy and a high incidence (~25%) of life-threatening thrombotic complications. Both hypercoagulopathy and hypofibrinolysis are described contributors to NS-related VTE risk. However, the mechanisms underlying the latter are poorly understood. We previously showed NS disease severity is directly proportional to both hypercoagulopathy and fibrinolytic resistance There is evidence that fibrin clot structural density contributes to clot stability and has been observed in the presence of both increased plasma thrombin generation and fibrinogen levels, both of which we have previously demonstrated in NS. Thus the aim of the present study was to investigate the mechanistic relationship between fibrin clot structure and fibrinolysis using two rodent models of NS and a cohort of human NS patients. We hypothesized that hypofibrinolysis arises from increased fibrin network density in a manner directly proportional to NS disease severity. Methods Using two well-established rat models of NS, transgenic diphtheria toxin receptor (DTR) and puromycin aminonucleoside (PAN), we compared fibrinolytic markers to disease severity. A range of severity was induced by a single injection of diphtheria toxin (0-75 ng/kg IP) or PAN (0-150 mg/kg IV). On day 10 post-injection, morning spot urines were collected and analyzed for protein:creatinine ratio (uPr:Cr). Rats were then anesthetized and venous blood (IVC) was collected into 0.32% NaCitrate/1.45 µM Corn Trypsin Inhibitor and spun down to platelet poor plasma (PPP). Samples were also collected from a local cohort of pediatric and adult NS patients (n=23), along with the corresponding clinical lab data for each patient. Plasma clot lysis assay (CLA) was performed using urokinase (50 IU) +/- plasminogen (2.4 uM), on clots initiated with high (20 nM) or low (5 nM) thrombin. Clot fibrin network structure was visualized/assessed by laser scanning confocal microscopy using fluorescently-labeled fibrinogen as a tracer. Fibrinolytic markers in plasma were measured by ELISA. Results Hypofibrinolysis: Previous findings of a hypofibrinolytic defect was confirmed with the CLA, such that plasma clot lysis at 60 min was significantly negatively correlated with proteinuria (R2=0.196; P=0.007 & R2=0.214; P=0.010) and significantly positively correlated with hypoalbuminemia (R2=0.310; P<0.001 & R2=0.240; P=0.006), in the DTR & PAN models, respectively. Additionally, plasma clot lysis by CLA was decreased in NS patients with uPrCr ≥2 (n=16) vs. <2 mg/mg (n=7) (96.1 vs 55.2 %, respectively; P=0.041). Similar results were found when the assay was repeated using high or low thrombin concentrations or increased UK (200 IU), with and without the addition of physiologic amounts of plasminogen. When the assay was performed in the absence of UK (0 IU), lysis at 60 min was drastically reduced (~17%) with no difference between groups. Mechanisms of Hypofibrinolysis: Fibrin network density increased with disease severity such that it was positively correlated with proteinuria (P=0.022) and negatively correlated with hypoalbuminemia (P=0.01) in our DTR rat model, with similar results seen in our human samples (Figure). As expected, fibrin network density was negatively correlated with plasma clot lysis (P=0.04), while plasma fibrinogen concentration (P=0.017), and thrombin generation (P=0.047) were positively correlated with fibrin density. There was no correlation with plasma uPA, PAI-1, a2AP, tPA, TAFI, or plasminogen. Conclusions These data suggest that nephrotic plasma forms thrombi with a denser fibrin network that is resistant to fibrinolysis, in a manner that is proportional to disease severity. The significant correlation between thrombin generation and fibrin network density suggest that plasma thrombotic potential may be a key mechanism contributing to the altered clot structure and impaired clot lysis of NS. Current studies are exploring the mechanisms underlying and in vivo significance of fibrinolytic resistance in our rat NS models. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4231-4231
Author(s):  
Manu Thomas Kalathottukaren ◽  
Rajesh A Shenoi ◽  
Lai FL Benjamin ◽  
Fred Rosell ◽  
Jayachandran N Kizhakkedathu ◽  
...  

Abstract Background and Objective Anticoagulants play a pivotal role in the treatment of thromboembolic disorders. Haemorrhage in surgical patients receiving anticoagulants is a major concern. Antidotes are administered to counteract anticoagulation and to restore normal hemostasis. To date, protamine sulphate (PS), a cationic polypeptide is the only clinically approved antidote for unfractionated heparin. PS has toxic side effects and limitations. Inability of PS to completely reverse low molecular weight heparins and fondaparinux is due to its low binding affinity to these drugs. However, PS interacts with coagulation proteins such as fibrinogen to form aggregates which leads to cardiovascular adverse effects. Recently, we developed a synthetic universal heparin reversal agent (UHRA) with high binding affinity to heparins. In vivo studies revealed that UHRA completely reverse the activity of all clinical available parenteral anticoagulants and is nontoxic. This study aims to demonstrate the nontoxic nature of UHRA by assessing its influence on fibrinogen, fibrin clot architecture, plasma clotting and clot lysis. Methods UHRA was developed by incorporating tertiary amine based heparin binding groups on a dendritic hyperbranched polyglycerol scaffold and capping it with methoxy polyethylene glycol chains. Recalcification and tissue factor (TF) initiated turbidimetric plasma clotting assays was performed to understand the impact of UHRA on coagulation system. The interaction of UHRA on fibrinogen was investigated by fibrinogen aggregation assay, fibrin polymerization assay and by spectroscopic analysis (fluorescence and circular dichroism (CD)). The influence of UHRA on fibrin clot architecture was evaluated by scanning electron microscopy (SEM).The anticoagulant neutralization (heparins) by UHRA was studied by fluorogenic thrombin generation assay (TGA) in human platelet-rich plasma (PRP). The lysis of TF-induced plasma clot containing UHRA or PS exposed to exogenous tissue plasminogen activator (t-PA) was studied by turbidimetric assay. Results and discussion Results from the plasma clotting assays showed that UHRA did not alter the clotting parameters compared to PS (TF initiated lag time and maximum absorbance, control vs UHRA 200 mcg/mL, p=0.21 and 0.16, respectively; lag time and maximum absorbance in recalcification, control vs UHRA 200mcg/mL, p=0.08 and 0.13, respectively) suggesting that UHRA has no effect on coagulation system at the concentration studied (Figure 1). Unlike protamine, the fibrinogen aggregation and fibrin polymerization assay was not influenced by UHRA over a broad range of concentrations from 0.05mg/mL to 1mg/mL. Together with tryptophan fluorescence quenching measurements (Figure 2) and fibrinogen secondary structure measurements corroborates that UHRA is not interacting with fibrinogen. The results are quite different from PS and other synthetic cationic polymers which interact with fibrinogen eliciting aggregation and conformational changes. Fibrin clots generated in presence of UHRA (even at 0.5 mg/mL) showed similar structure and fiber size remains same as normal fibrin clot (control vs UHRA 0.5 mg/mL clot, p= 0.12) (Figure 3). On the other hand, fibrin clots formed in the presence of 0.05mg/mL PS (clinical dose) increased the fiber size and changed the clot structure dramatically (control vs PS 0.05mg/mL clot, p< 0.0001). Our plasma clot lysis studies in the presence of exogenous t-PA demonstrate that UHRA did not enhance clot degradation unlike protamine. UHRA restored thrombin levels in anticoagulated PRP (heparinized) demonstrating the efficacy. Conclusion and significance Our studies demonstrate that universal heparin antidote, UHRA, has negligible impact on fibrinogen, fibrin polymerization, clot structure, clot degradation and the coagulation system revealing their excellent hemocompatibility compared to protamine. Our results support the fact that UHRA could be an ideal antidote to restore hemostasis following invasive surgical procedures and to address bleeding complications by heparin based anticoagulants. Figure 1 Figure 1. Figure 3 Figure 3. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 8 (11) ◽  
pp. 1447-1454 ◽  
Author(s):  
Marc Blondon ◽  
Emmanuel Biver ◽  
Olivia Braillard ◽  
Marc Righini ◽  
Pierre Fontana ◽  
...  

Objective Vitamin D deficiency is associated with increased risks of arterial and venous cardiovascular events. Hypothetically, supplementation with vitamin D may lead to a less prothrombotic phenotype, as measured by global coagulation assays and fibrin clot structure. Methods In this prospective cohort study, we enrolled adult outpatients attending the Primary Care Division of the Geneva University Hospitals with a severe vitamin D deficiency (25-hydroxyvitamin-D3 (25-OHD) <25 nmol/L), excluding obese patients or with a recent acute medical event. We evaluated changes in coagulation times, thrombin generation assay, clot formation and clot lysis time, 25-OHD and parathormone before and 1–3 months after cholecalciferol oral supplementation with one-time 300,000 IU then 800 IU daily. Paired t-tests with a two-sided alpha of 0.05 compared absolute mean differences. Results The 48 participants had a mean age of 43.8 ± 13.8 years. After supplementation, 25-OHD levels increased from 17.9 ± 4.6 nmol/L to 62.5 ± 20.7 nmol/L 6.4 ± 3.0 weeks after inclusion. Endogenous thrombin potential and thrombin generation peak values both decreased significantly (−95.4 nM × min (95%CI −127.9 to −62.8), P < 0.001; −15.1 nM (−23.3 to −6.8), P < 0.001). The maximum absorbance by turbidimetry decreased significantly (P = 0.001) after supplementation. There was no change in clot lysis time, coagulation times or plasminogen activator inhibitor-1 and homocysteine levels. Conclusions In severe vitamin D deficiency, a high-dose cholecalciferol supplementation was associated with a reduction in thrombin generation and an average decreased number of fibrin protofibrils per fibers and fibrin fiber size measured by turbidimetry. This suggests that severe vitamin D deficiency may be associated with a potentially reversible prothrombotic profile.


Sign in / Sign up

Export Citation Format

Share Document