Lowering the Schottky Barrier Height by Graphene/Ag Electrodes for High-Mobility MoS2 Field-Effect Transistors

2018 ◽  
Vol 31 (2) ◽  
pp. 1804422 ◽  
Author(s):  
Sang-Soo Chee ◽  
Dongpyo Seo ◽  
Hanggyu Kim ◽  
Hanbyeol Jang ◽  
Seungmin Lee ◽  
...  
2D Materials ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 015010 ◽  
Author(s):  
Muhammad Farooq Khan ◽  
Shania Rehman ◽  
Imtisal Akhtar ◽  
Sikandar Aftab ◽  
Hafiz Muhammad Salman Ajmal ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Yi-Hsun Chen ◽  
Chih-Yi Cheng ◽  
Shao-Yu Chen ◽  
Jan Sebastian Dominic Rodriguez ◽  
Han-Ting Liao ◽  
...  

AbstractIn two-dimensional (2D)-semiconductor-based field-effect transistors and optoelectronic devices, metal–semiconductor junctions are one of the crucial factors determining device performance. The Fermi-level (FL) pinning effect, which commonly caused by interfacial gap states, severely limits the tunability of junction characteristics, including barrier height and contact resistance. A tunneling contact scheme has been suggested to address the FL pinning issue in metal–2D-semiconductor junctions, whereas the experimental realization is still elusive. Here, we show that an oxidized-monolayer-enabled tunneling barrier can realize a pronounced FL depinning in indium selenide (InSe) transistors, exhibiting a large pinning factor of 0.5 and a highly modulated Schottky barrier height. The FL depinning can be attributed to the suppression of metal- and disorder-induced gap states as a result of the high-quality tunneling contacts. Structural characterizations indicate uniform and atomically thin-surface oxidation layer inherent from nature of van der Waals materials and atomically sharp oxide–2D-semiconductor interfaces. Moreover, by effectively lowering the Schottky barrier height, we achieve an electron mobility of 2160 cm2/Vs and a contact barrier of 65 meV in two-terminal InSe transistors. The realization of strong FL depinning in high-mobility InSe transistors with the oxidized-monolayer presents a viable strategy to exploit layered semiconductors in contact engineering for advanced electronics and optoelectronics.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2346
Author(s):  
Yonatan Vaknin ◽  
Ronen Dagan ◽  
Yossi Rosenwaks

Understanding the nature of the barrier height in a two-dimensional semiconductor/metal interface is an important step for embedding layered materials in future electronic devices. We present direct measurement of the Schottky barrier height and its lowering in the transition metal dichalcogenide (TMD)/metal interface of a field effect transistor. It is found that the barrier height at the gold/ single-layer molybdenum disulfide (MoS2) interfaces decreases with increasing drain voltage, and this lowering reaches 0.5–1 V We also show that increase of the gate voltage induces additional barrier lowering.


Nanoscale ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 4811-4821 ◽  
Author(s):  
Shan Zheng ◽  
Haichang Lu ◽  
Huan Liu ◽  
Dameng Liu ◽  
John Robertson

We report an effective approach for reducing the Schottky barrier height (SBH) in the source and drain (S/D) contacts of WS2 field-effect transistors (FETs) using an ultrathin Al2O3 interfacial layer between the metal and WS2.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sachin Gupta ◽  
F. Rortais ◽  
R. Ohshima ◽  
Y. Ando ◽  
T. Endo ◽  
...  

AbstractTwo-dimensional MoS2 has emerged as promising material for nanoelectronics and spintronics due to its exotic properties. However, high contact resistance at metal semiconductor MoS2 interface still remains an open issue. Here, we report electronic properties of field effect transistor devices using monolayer MoS2 channels and permalloy (Py) as ferromagnetic (FM) metal contacts. Monolayer MoS2 channels were directly grown on SiO2/Si substrate via chemical vapor deposition technique. The increase in current with back gate voltage (Vg) shows the tunability of FET characteristics. The Schottky barrier height (SBH) estimated for Py/MoS2 contacts is found to be +28.8 meV (at Vg = 0V), which is the smallest value reported so-far for any direct metal (magnetic or non-magnetic)/monolayer MoS2 contact. With the application of positive gate voltage, SBH shows a reduction, which reveals ohmic behavior of Py/MoS2 contacts. Low SBH with controlled ohmic nature of FM contacts is a primary requirement for MoS2 based spintronics and therefore using directly grown MoS2 channels in the present study can pave a path towards high performance devices for large scale applications.


Sign in / Sign up

Export Citation Format

Share Document