scholarly journals X‐ray‐Controlled Bilayer Permeability of Bionic Nanocapsules Stabilized by Nucleobase Pairing Interactions for Pulsatile Drug Delivery

2019 ◽  
Vol 31 (37) ◽  
pp. 1903443 ◽  
Author(s):  
Hongzhang Deng ◽  
Lisen Lin ◽  
Sheng Wang ◽  
Guocan Yu ◽  
Zijian Zhou ◽  
...  
Author(s):  
ShirishaG. Suddala ◽  
S. K. Sahoo ◽  
M. R. Yamsani

Objective: The objective of this research work was to develop and evaluate the floating– pulsatile drug delivery system (FPDDS) of meloxicam intended for Chrono pharmacotherapy of rheumatoid arthritis. Methods: The system consisting of drug containing core, coated with hydrophilic erodible polymer, which is responsible for a lag phase for pulsatile release, top cover buoyant layer was prepared with HPMC K4M and sodium bicarbonate, provides buoyancy to increase retention of the oral dosage form in the stomach. Meloxicam is a COX-2 inhibitor used to treat joint diseases such as osteoarthritis and rheumatoid arthritis. For rheumatoid arthritis Chrono pharmacotherapy has been recommended to ensure that the highest blood levels of the drug coincide with peak pain and stiffness. Result and discussion: The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. Hence, the main objective of present work is to formulate FPDDS of meloxicam in order to achieve drug release after pre-determined lag phase. Developed formulations were evaluated for in vitro drug release studies, water uptake and erosion studies, floating behaviour and in vivo radiology studies. Results showed that a certain lag time before drug release which was due to the erosion of the hydrophilic erodible polymer. The lag time clearly depends on the type and amount of hydrophilic polymer which was applied on the inner cores. Floating time and floating lag time was controlled by quantity and composition of buoyant layer. In vivo radiology studies point out the capability of the system of longer residence time of the tablets in the gastric region and releasing the drug after a programmed lag time. Conclusion: The optimized formulation of the developed system provided a lag phase while showing the gastroretension followed by pulsatile drug release that would be beneficial for chronotherapy of rheumatoid arthritis and osteoarthritis.


2015 ◽  
Vol 51 (2) ◽  
pp. 255-263
Author(s):  
Rupali Nanasaheb Kadam ◽  
Raosaheb Sopanrao Shendge ◽  
Vishal Vijay Pande

<p>The use of nanotechnology based on the development and fabrication of nanostructures is one approach that has been employed to overcome the challenges involved with conventional drug delivery systems. Formulating Nanoplex is the new trend in nanotechnology. A nanoplex is a complex formed by a drug nanoparticle with an oppositely charged polyelectrolyte. Both cationic and anionic drugs form complexes with oppositely charged polyelectrolytes. Compared with other nanostructures, the yield of Nanoplex is greater and the complexation efficiency is better. Nanoplex are also easier to prepare. Nanoplex formulation is characterized through the production yield, complexation efficiency, drug loading, particle size and zeta potential using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and dialysis studies. Nanoplex have wide-ranging applications in different fields such as cancer therapy, gene drug delivery, drug delivery to the brain and protein and peptide drug delivery.</p>


2021 ◽  
pp. 2001681
Author(s):  
Kim Tien Nguyen ◽  
Gwangjun Go ◽  
Zhen Jin ◽  
Bobby Aditya Darmawan ◽  
Ami Yoo ◽  
...  

2017 ◽  
Vol 30 (4) ◽  
pp. 1703323 ◽  
Author(s):  
Qianqian Zhang ◽  
Jianxin Kang ◽  
Zhiqiang Xie ◽  
Xungang Diao ◽  
Zhaoyue Liu ◽  
...  

2017 ◽  
Vol 18 (10) ◽  
Author(s):  
Vinay Pandit ◽  
Ajay Kumar ◽  
Mahendra S. Ashawat ◽  
Chander P. Verma ◽  
Pravin Kumar

Author(s):  
Shan-Ting Hsu ◽  
Y. Lawrence Yao

Poly(L-lactic acid) (PLLA) has been shown to have potential medical usage such as in drug delivery because it can degrade into bioabsorbable products in physiological environments, and its degradation is affected by crystallinity. In this paper, the effect of film formation method and annealing on the crystallinity of PLLA are investigated. The films are made through solvent casting and spin coating methods, and subsequent annealing is conducted. The resulting crystalline morphology, structure, conformation, and intermolecular interaction are examined using optical microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. It is observed that solvent casting produces category 1 spherulites while annealed spin coated films leads to spherulites of category 2. Distinct lamellar structures and intermolecular interactions in the two kinds of films have been shown. The results enable better understanding of the crystallinity in PLLA, which is essential for its drug delivery application.


Sign in / Sign up

Export Citation Format

Share Document