scholarly journals A review of nanotechnology with an emphasis on Nanoplex

2015 ◽  
Vol 51 (2) ◽  
pp. 255-263
Author(s):  
Rupali Nanasaheb Kadam ◽  
Raosaheb Sopanrao Shendge ◽  
Vishal Vijay Pande

<p>The use of nanotechnology based on the development and fabrication of nanostructures is one approach that has been employed to overcome the challenges involved with conventional drug delivery systems. Formulating Nanoplex is the new trend in nanotechnology. A nanoplex is a complex formed by a drug nanoparticle with an oppositely charged polyelectrolyte. Both cationic and anionic drugs form complexes with oppositely charged polyelectrolytes. Compared with other nanostructures, the yield of Nanoplex is greater and the complexation efficiency is better. Nanoplex are also easier to prepare. Nanoplex formulation is characterized through the production yield, complexation efficiency, drug loading, particle size and zeta potential using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and dialysis studies. Nanoplex have wide-ranging applications in different fields such as cancer therapy, gene drug delivery, drug delivery to the brain and protein and peptide drug delivery.</p>

Author(s):  
Poonam Madhukar Kasar ◽  
Kalyani Sundarrao Kale ◽  
Dipti Ganesh Phadtare

The use of nanotechnology based on the development and fabrication of nanostructures is one approach that has been employed to overcome the challenges involved with conventional drug delivery systems. Formulating Nanoplex is the new trend in nanotechnology. Nanoplex means drug nanoparticle complex with the oppositely charged polyelectrolyte. In this technique, the cationic or anionic drug is reacted with an oppositely charged polyelectrolyte to form a complex. Compared with other nanostructures, the yield of Nanoplex is greater and the complexation efficiency is better. The nanoplex formed shows improved solubility and dissolution rate compared to raw drug crystals. Nanoplex formulation is characterized through the production yield, complexation efficiency, drug loading, particle size and zeta potential using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and dialysis studies. Nanoplex have wide-ranging applications in different fields such as cancer therapy, gene-drug delivery, drug delivery to the brain and protein and peptide drug delivery.


2020 ◽  
Vol 20 (8) ◽  
pp. 5246-5251
Author(s):  
El-Refaie Kenawy ◽  
Nehal O. Shaker ◽  
Mohamed Azaam ◽  
Aya S. Lasheen ◽  
Jianjian Lin ◽  
...  

The urgent need of safe, therapeutically and patient-compliant drug delivery systems (DDSs) continuously stimulates researchers to explore novel tools and strategies to monitor the loading and release of drugs. In this context, this study demonstrates that montmorillonite clay (MMT) is an appropriate material for changing the release behavior of Tobramycin and Norfloxacin drugs into medium. The DDSs were prepared by the intercalation of Tobramycin or Norfloxacin between MMT layers. The MMT-drug systems were analyzed using X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), and Fourier transforms infrared (FT-IR). After insertion of the drugs between the layers of MMT, the periodicity in c-axis changed because of the formation of layered hybrid structures. The release of drugs was investigated using UV-spectrophotometer. The release rates are found to be dependent on pH of the medium. Moreover, we found that the percentage of release increases as the pH increases, however the release rate is low. These findings would be beneficial for controlled release of drugs for prolonged time in the future.


2019 ◽  
Vol 39 (6) ◽  
pp. 534-544
Author(s):  
Farid Ouazib ◽  
Naima Bouslah Mokhnachi ◽  
Nabila Haddadine ◽  
Regis Barille

Abstract Drug delivery systems based upon the blending of Arabic gum and poly(N-vinylpyrrolidone) (AG/PVP) were prepared for the controlled release of acebutolol (Acb) hydrochloride. The prepared blends containing Acb were characterized using different techniques. The presence of physical interactions between the drug and polymer matrices was observed with Fourier-transform infrared spectroscopy. These interactions resulted in the transition of the drug from a crystalline to an amorphous state into the polymeric matrices, as demonstrated by differential scanning calorimetry and X-ray diffraction analysis. The thermogravimetric analysis study confirmed the presence of these interactions, which had a stabilizing effect on the drug against both thermal degradation and crystallinity. The in vitro release of Acb from the AG/PVP polymer system was investigated. Each drug-loaded system was used in a tablet formulation. Moreover, an in vitro dissolution study was carried out in three different dissolution media, and comparison of the dissolution profiles of the different dosage forms revealed that the polymer blend matrix had a better release-retarding efficiency. To better understand the release mechanism, the dissolution data were fitted to various release kinetic models.


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


2019 ◽  
Vol 26 (14) ◽  
pp. 2502-2513 ◽  
Author(s):  
Md. Iqbal Hassan Khan ◽  
Xingye An ◽  
Lei Dai ◽  
Hailong Li ◽  
Avik Khan ◽  
...  

The development of innovative drug delivery systems, versatile to different drug characteristics with better effectiveness and safety, has always been in high demand. Chitosan, an aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives can be used for direct compression tablets, as disintegrant for controlled release or for improving dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere technology in hydrogel formulation is particularly relevant to pharmaceutical product development. This review highlights the suitability and future of chitosan in drug delivery with special attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation have made this polymer an attractive candidate for developing novel drug delivery systems including various advanced therapeutic applications such as gene delivery, DNA based drugs, organ specific drug carrier, cancer drug carrier, etc.


2020 ◽  
Vol 27 (21) ◽  
pp. 3534-3554 ◽  
Author(s):  
Fan Jiang ◽  
Yunqi Zhu ◽  
Changyang Gong ◽  
Xin Wei

Atherosclerosis is the leading inducement of cardiovascular diseases, which ranks the first cause of global deaths. It is an arterial disease associated with dyslipidemia and changes in the composition of the vascular wall. Besides invasive surgical strategy, the current conservative clinical treatment for atherosclerosis falls into two categories, lipid regulating-based therapy and antiinflammatory therapy. However, the existing strategies based on conventional drug delivery systems have shown limited efficacy against disease development and plenty of side effects. Nanomedicine has great potential in the development of targeted therapy, controlled drug delivery and release, the design of novel specific drugs and diagnostic modalities, and biocompatible scaffolds with multifunctional characteristics, which has led to an evolution in the diagnosis and treatment of atherosclerosis. This paper will focus on the latest nanomedicine strategies for atherosclerosis diagnosis and treatment as well as discussing the potential therapeutic targets during atherosclerosis progress, which could form the basis of development of novel nanoplatform against atherosclerosis.


2020 ◽  
Vol 26 (33) ◽  
pp. 4174-4184
Author(s):  
Marina P. Abuçafy ◽  
Bruna L. da Silva ◽  
João A. Oshiro-Junior ◽  
Eloisa B. Manaia ◽  
Bruna G. Chiari-Andréo ◽  
...  

Nanoparticles as drug delivery systems and diagnostic agents have gained much attention in recent years, especially for cancer treatment. Nanocarriers improve the therapeutic efficiency and bioavailability of antitumor drugs, besides providing preferential accumulation at the target site. Among different types of nanocarriers for drug delivery assays, metal-organic frameworks (MOFs) have attracted increasing interest in the academic community. MOFs are an emerging class of coordination polymers constructed of metal nodes or clusters and organic linkers that show the capacity to combine a porous structure with high drug loading through distinct kinds of interactions, overcoming the limitations of traditional drug carriers explored up to date. Despite the rational design and synthesis of MOFs, structural aspects and some applications of these materials like gas adsorption have already been comprehensively described in recent years; it is time to demonstrate their potential applications in biomedicine. In this context, MOFs can be used as drug delivery systems and theranostic platforms due to their ability to release drugs and accommodate imaging agents. This review describes the intrinsic characteristics of nanocarriers used in cancer therapy and highlights the latest advances in MOFs as anticancer drug delivery systems and diagnostic agents.


2020 ◽  
Vol 21 (9) ◽  
pp. 649-660
Author(s):  
Subashini Raman ◽  
Syed Mahmood ◽  
Ayah R. Hilles ◽  
Md Noushad Javed ◽  
Motia Azmana ◽  
...  

Background: Blood-brain barrier (BBB) plays a most hindering role in drug delivery to the brain. Recent research comes out with the nanoparticles approach, is continuously working towards improving the delivery to the brain. Currently, polymeric nanoparticle is extensively involved in many therapies for spatial and temporal targeted areas delivery. Methods: We did a non-systematic review, and the literature was searched in Google, Science Direct and PubMed. An overview is provided for the formulation of polymeric nanoparticles using different methods, effect of surface modification on the nanoparticle properties with types of polymeric nanoparticles and preparation methods. An account of different nanomedicine employed with therapeutic agent to cross the BBB alone with biodistribution of the drugs. Results: We found that various types of polymeric nanoparticle systems are available and they prosper in delivering the therapeutic amount of the drug to the targeted area. The effect of physicochemical properties on nanoformulation includes change in their size, shape, elasticity, surface charge and hydrophobicity. Surface modification of polymers or nanocarriers is also vital in the formulation of nanoparticles to enhance targeting efficiency to the brain. Conclusion: More standardized methods for the preparation of nanoparticles and to assess the relationship of surface modification on drug delivery. While the preparation and its output like drug loading, particle size, and charge, permeation is always conflicted, so it requires more attention for the acceptance of nanoparticles for brain delivery.


Sign in / Sign up

Export Citation Format

Share Document