scholarly journals Chiral Structures: Manipulation of Asymmetric Transmission in Planar Chiral Nanostructures by Anisotropic Loss (Advanced Optical Materials 7/2013)

2013 ◽  
Vol 1 (7) ◽  
pp. 472-472 ◽  
Author(s):  
Zhaofeng Li ◽  
Mutlu Gokkavas ◽  
Ekmel Ozbay
1989 ◽  
Vol 175 ◽  
Author(s):  
S.H. Chen ◽  
M.L. Tsai ◽  
S.D. Jacobs

AbstractChiral nematic copolymers based on optically active cholesterol, dihydrocholesterol, (R)-(+)- and (S)-(−)-1-phenylethylamine, and (+)- and (−)- isopinocampheol were synthesized and characterized for the investigations of thermotropic and optical properties. Although helical sense does not appear to correlate with the sign of [α]D of the precursor chiral compound as suggested by the observations of cholesteryl and dihydrocholesteryl copolymers, the inversion of chirality in the pendant group, (R)-(+)- vs (S)-(−)-1-phenylethylamine, does lead to the opposite handedness in the resultant helical structure. To better understand the structure-property relationships involving helical sense and twisting power, systematic studies of the roles played by both nematogenic and chiral structures as well as other structural features of the comonomers should be conducted.


2019 ◽  
Vol 7 (14) ◽  
pp. 1970052 ◽  
Author(s):  
Takashige Omatsu ◽  
Katsuhiko Miyamoto ◽  
Kohei Toyoda ◽  
Ryuji Morita ◽  
Yoshihiko Arita ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
SeongYong Cho ◽  
Misaki Takahashi ◽  
Jun-ichi Fukuda ◽  
Hiroyuki Yoshida ◽  
Masanori Ozaki

AbstractControlling the crystallographic orientation of 3D photonic crystals is important as it determines the behavior of light propagating through the device. Blue phases self-assemble into unique soft 3D photonic crystals with chiral structures for circular-polarization selectivity, but it has remained a challenge to control its 3D orientation. Here, we show that the orientation of blue phases can be precisely controlled to follow a predefined pattern imprinted on a substrate by exploiting field-induced phase transitions. Obtaining the blue phase through the field-induced chiral nematic phase and tetragonal blue phase X results in a highly oriented blue phase I with the crystallographic [001] direction aligned along the surface anchoring. Our approach is applied to fabricating a Bragg-Berry hologram with omnidirectional circular-polarization selectivity, where the hologram is visible only for one circular-polarization under all incident angles. Such devices are difficult to fabricate using conventional optical materials, thereby demonstrating the potential of self-organizing soft matter for photonics.


Nano Letters ◽  
2007 ◽  
Vol 7 (7) ◽  
pp. 1996-1999 ◽  
Author(s):  
V. A. Fedotov ◽  
A. S. Schwanecke ◽  
N. I. Zheludev ◽  
V. V. Khardikov ◽  
S. L. Prosvirnin

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ranran Zhang ◽  
Qiuling Zhao ◽  
Xia Wang ◽  
Kai Ming Lau ◽  
Tsz Kit Yung ◽  
...  

Abstract Metasurfaces with ultrathin artificial structures have attracted much attention because of their unprecedented capability in light manipulations. The recent development of metasurfaces with controllable responses opens up new opportunities in various applications. Moreover, metasurfaces composed of twisted chiral structures can generate asymmetric responses for opposite incidence, leading to more degrees of freedom in wave detections and controls. However, most past studies had focused on the amplitude responses, not to mention using bi-directional phase responses, in the characterization and light manipulation of chiral metasurfaces. Here, we report a birefringent interference approach to achieve a controllable asymmetric bi-directional transmission phase from planar chiral metasurface by tuning the orientation of the metasurface with respect to the optical axis of an add-on birefringent substrate. To demonstrate our approach, we fabricate planar Au sawtooth nanoarray metasurface and measure the asymmetric transmission phase of the metasurface placed on a birefringent sapphire crystal slab. The Au sawtooth metasurface-sapphire system exhibits large oscillatory behavior for the asymmetric transmission phase with the tuning parameter. We confirm our experimental results by Jones matrix calculations using data obtained from full-wave simulations for the metasurface. Our approach in the characterization and light manipulation of metasurfaces with controllable responses is simple and nondestructive, enabling new functionalities and potential applications in optical communication, imaging, and remote sensing.


Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Sign in / Sign up

Export Citation Format

Share Document