scholarly journals Room Temperature Electroluminescence from Mechanically Formed van der Waals III-VI Homojunctions and Heterojunctions

2014 ◽  
Vol 2 (11) ◽  
pp. 1064-1069 ◽  
Author(s):  
Nilanthy Balakrishnan ◽  
Zakhar R. Kudrynskyi ◽  
Michael W. Fay ◽  
Garry W. Mudd ◽  
Simon A. Svatek ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saurabh Dixit ◽  
Nihar Ranjan Sahoo ◽  
Abhishek Mall ◽  
Anshuman Kumar

AbstractMid-infrared (IR) spectral region is of immense importance for astronomy, medical diagnosis, security and imaging due to the existence of the vibrational modes of many important molecules in this spectral range. Therefore, there is a particular interest in miniaturization and integration of IR optical components. To this end, 2D van der Waals (vdW) crystals have shown great potential owing to their ease of integration with other optoelectronic platforms and room temperature operation. Recently, 2D vdW crystals of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2 \hbox {O}_5$$ V 2 O 5 have been shown to possess the unique phenomenon of natural in-plane biaxial hyperbolicity in the mid-infrared frequency regime at room temperature. Here, we report a unique application of this in-plane hyperbolicity for designing highly efficient, lithography free and extremely subwavelength mid-IR photonic devices for polarization engineering. In particular, we show the possibility of a significant reduction in the device footprint while maintaining an enormous extinction ratio from $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 based mid-IR polarizers. Furthermore, we investigate the application of sub-wavelength thin films of these vdW crystals towards engineering the polarization state of incident mid-IR light via precise control of polarization rotation, ellipticity and relative phase. We explain our results using natural in-plane hyperbolic anisotropy of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 via both analytical and full-wave electromagnetic simulations. This work provides a lithography free alternative for miniaturized mid-infrared photonic devices using the hyperbolic anisotropy of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 .


CrystEngComm ◽  
2021 ◽  
Author(s):  
Weiyuan Wang ◽  
Jiyu Fan ◽  
Hao Liu ◽  
Huan Zheng ◽  
Chuanlan Ma ◽  
...  

Exploiting two-dimensional room temperature ferromagnetic materials is always a significant and valuable work. However, the actual number of satisfied materials with intrinsic ferromagnetism is very limited. Here, the van der...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hao Wu ◽  
Wenfeng Zhang ◽  
Li Yang ◽  
Jun Wang ◽  
Jie Li ◽  
...  

AbstractControl of ferromagnetism is of critical importance for a variety of proposed spintronic and topological quantum technologies. Inducing long-range ferromagnetic order in ultrathin 2D crystals will provide more functional possibility to combine their unique electronic, optical and mechanical properties to develop new multifunctional coupled applications. Recently discovered intrinsic 2D ferromagnetic crystals such as Cr2Ge2Te6, CrI3 and Fe3GeTe2 are intrinsically ferromagnetic only below room temperature, mostly far below room temperature (Curie temperature, ~20–207 K). Here we develop a scalable method to prepare freestanding non-van der Waals ultrathin 2D crystals down to mono- and few unit cells (UC) and report unexpected strong, intrinsic, ambient-air-robust, room-temperature ferromagnetism with TC up to ~367 K in freestanding non-van der Waals 2D CrTe crystals. Freestanding 2D CrTe crystals show comparable or better ferromagnetic properties to widely-used Fe, Co, Ni and BaFe12O19, promising as new platforms for room-temperature intrinsically-ferromagnetic 2D crystals and integrated 2D devices.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
E. V. Calman ◽  
M. M. Fogler ◽  
L. V. Butov ◽  
S. Hu ◽  
A. Mishchenko ◽  
...  

2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Hongrui Zhang ◽  
Rui Chen ◽  
Kun Zhai ◽  
Xiang Chen ◽  
Lucas Caretta ◽  
...  

2020 ◽  
Vol 19 (2) ◽  
pp. 170-175 ◽  
Author(s):  
L. Antonio Benítez ◽  
Williams Savero Torres ◽  
Juan F. Sierra ◽  
Matias Timmermans ◽  
Jose H. Garcia ◽  
...  

ACS Nano ◽  
2019 ◽  
Vol 13 (7) ◽  
pp. 8193-8201 ◽  
Author(s):  
Sidi Fan ◽  
Quoc An Vu ◽  
Sanghyub Lee ◽  
Thanh Luan Phan ◽  
Gyeongtak Han ◽  
...  

2018 ◽  
Vol 13 (4) ◽  
pp. 289-293 ◽  
Author(s):  
Manuel Bonilla ◽  
Sadhu Kolekar ◽  
Yujing Ma ◽  
Horacio Coy Diaz ◽  
Vijaysankar Kalappattil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document