Effect of processing parameters on the cellular morphology and mechanical properties of thermoplastic polyolefin (TPO) microcellular foams

2007 ◽  
Vol 26 (4) ◽  
pp. 232-246 ◽  
Author(s):  
Steven Wong ◽  
Hani E. Naguib ◽  
Chul B. Park
Author(s):  
Steven Wong ◽  
Hani E. Naguib ◽  
Chul B. Park

In this study, the effects of processing parameters on the cellular morphologies and mechanical properties of TPO70 (Thermoplastic Polyolefin) microcellular foams are investigated. Microcellular closed cell TPO70 foams were prepared using a two-stage batch process method. The microstructure of these foamed samples was controlled by carefully altering the processing parameters such as saturation pressure, foaming temperature and foaming time. The foam morphologies were characterized in terms of the cell density, foam density and average cell size. Elastic modulus, tensile strength, and elongation at break of the foamed TPO70 samples were measured for different cell morphologies. The findings show that the mechanical properties were significantly affected by the foaming parameters which varied with the cell morphologies. The experimental results can be used to predict the microstructure and mechanical properties of microcellular polymeric TPO70 foams prepared with different processing parameters.


2005 ◽  
Vol 24 (4) ◽  
pp. 177-195 ◽  
Author(s):  
Jin Fu ◽  
Choonghee Jo ◽  
Hani E. Naguib

In this study, the effect of processing parameters on the cellular morphologies and mechanical properties of PMMA microcellular foams is investigated. Microcellular closed cell Poly(methyl-methacrylate) (PMMA) foams were prepared using a two stage batch process method. The foam structure was controlled by altering the processing parameters such as foaming temperature, foaming time and saturation pressure. The foam morphologies were characterized in terms of the average cell size, cell density and foam density. Elastic modulus, tensile strength and elongation at break were studied as functions of the different foaming parameters. The mechanical properties were found to be greatly affected by the foaming parameters and vary with changing the cell morphologies. The experimental results were compared with existing analytical models to validate them and to predict the mechanical properties of microcellular polymeric PMMA foams prepared with different processing parameters. A constitutive equation for the nonlinear elastic behavior of polymeric microcellular foams was developed based on the Maxwell viscoelastic model. The results of this work can help designers optimize the foam processing parameters and achieve desired foam morphology and mechanical properties.


2013 ◽  
Vol 652-654 ◽  
pp. 167-174 ◽  
Author(s):  
Nesar Merah ◽  
Muneer Al-Qadhi

Proper dispersion of nano thin layered structure of nanoclay in polymer matrix offers new and greatly improved properties over pristine polymers. The degree of nanoclay dispersion and hence the improvements in the physical and mechanical properties depend greatly on the technique used and processing parameters. In this work, 2 wt.% epoxy-clay nanocomposites were fabricated using different mixing techniques to study the effect of mixing methods on the nanoclay dispersion and thus on the enhancement of the properties of the resultant nanocomposites. Three mixing techniques were explored: high shear mixing (HSM), ultrasonication and their combination as well as hand mixing. The effect of mixing techniques on morphology and mechanical properties of the resultant nanocomposites was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) and tensile testing. The results of XRD and TEM showed that both exfoliated and disordered intercalated morphology were developed for the nanocomposites synthesized by HSM, while ordered intercalated morphology was observed for samples prepared by sonication. The tensile test results show that among the mixing techniques considered in this study HSM results in the optimum mechanical properties as a whole while hand mixing resulted in the worst physical and mechanical properties.


2019 ◽  
Vol 137 (5) ◽  
pp. 48331
Author(s):  
Hossein Bagheri Ziarati ◽  
Mohammad Fasihi ◽  
Hosseinali Omranpour

2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Junjun Wu ◽  
Zexiang Xie ◽  
Hao Yang ◽  
Minghao Yang ◽  
Kaizhi Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document