scholarly journals Functional Recovery of Contused Spinal Cord in Rat with the Injection of Optimal-Dosed Cerium Oxide Nanoparticles

2017 ◽  
Vol 4 (10) ◽  
pp. 1700034 ◽  
Author(s):  
Jong-Wan Kim ◽  
Chinmaya Mahapatra ◽  
Jin-Young Hong ◽  
Min Soo Kim ◽  
Kam W. Leong ◽  
...  
2021 ◽  
Author(s):  
Zahra Behroozi ◽  
Behnaz Rahimi ◽  
Michael R Hamblin ◽  
Farinaz Nasirinezhad ◽  
Atousa Janzadeh ◽  
...  

Abstract Introduction: The present study, investigated the local injection of cerium oxide nanoparticles (CeONPs) into Spinal cord injury (SCI) lesions in rats, and the effect on motor performance and neuropathic pain, together with biochemical markers.Methods: 36 adult male Wistar rats were divided into 4 groups: control group (healthy animals); sham group (laminectomy); SCI group (laminectomy+SCI induction); treatment group (laminectomy + SCI induction + intrathecal injection of 10 µL of CeONPs (1000 µg/mL) immediately after injury). SCI was induced by application of an aneurysm clip at the T12-T13 vertebral region. Immediately after SCI, CeONPs were injected into the treatment group with a Hamilton syringe and micropipet. H&E staining and measurement of the size of the cavity were performed after 6 weeks, and the BBB motor performance test and pain threshold test were performed weekly. GCSF expression, P44/42 MAPK (ERK1/ERK2), P-P44/42 MAPK (ERK1/ERK2), total Tau, total MAG, β-actin were evaluated after 6 weeks.Results: The BBB score and pain threshold improved in animals receiving CeONPs compared with SCI animals. The size of the cavity decreased in the treatment group. GCSF protein expression levels were similar in animals receiving CeONPs compared with the SCI group, but the expression of ERK1/ERK2 and phospho-ERK was lower compared with the SCI group. The expression levels of Tau and MAG were significantly increased in treated animals compared to the SCI group.Conclusion: The use of CeONPs in SCI could improve motor functional recovery, reduce pain and increase nerve cell regeneration.


2020 ◽  
Vol 16 (5) ◽  
pp. 816-828
Author(s):  
Gurdeep Rattu ◽  
Nishtha Khansili ◽  
Prayaga M. Krishna

Background: Cerium oxide nanoparticles (nanoceria) are efficient free-radical scavengers due to their dual valence state and thus exhibit optical and catalytic properties. Therefore, the main purpose of this work was to understand the peroxidase mimic activity of polymer-stabilized nanoceria for enzyme-less H2O2 sensing by fluorescence spectrometer. Objective: This research revealed the development of fluorescence hydrogen peroxide nanosensor based on the peroxidase-like activity of polyacrylic acid stabilized nanoceria (PAA-CeO2 Nps). Methods: PAA-CeO2 Nps were synthesized by simple cross-linking reaction at a low temperature and characterized by XRD, SEM, Zeta potential, TGA, FT-IR and UV-VIS spectroscopic analysis. H2O2 sensing was performed by a fluorescence spectrometer. Results:: The synthesized polymer nanocomposite was characterized by XRD, SEM, TGA, FT-IR and UV-VIS spectroscopic analysis. The XRD diffraction patterns confirmed the polycrystalline nature and SEM micrograph showed nanoparticles having hexagonal symmetry and crystallite size of 32 nm. The broad peak of Ce–O bond appeared at 508 cm-1. UV-VIS measurements revealed a welldefined absorbance peak around 315 nm and an optical band-gap of 3.17 eV. As synthesized PAACeO2 Nps effectively catalysed the decomposition of hydrogen peroxide (H2O2) into hydroxyl radicals. Then terephthalic acid was oxidized by hydroxyl radical to form a highly fluorescent product. Under optimized conditions, the linear range for determination of hydrogen peroxide was 0.01 - 0.2 mM with a limit of detection (LOD) of 1.2 μM. Conclusion: The proposed method is ideally suited for the sensing of H2O2 at a low cost and this detection system enabled the sensing of analytes (sugars), which can enzymatically generate hydrogen peroxide.


2018 ◽  
Vol 6 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Azadeh Montazeri ◽  
Zohreh Zal ◽  
Arash Ghasemi ◽  
Hooman Yazdannejat ◽  
Hossein Asgarian-Omran ◽  
...  

Life Sciences ◽  
2021 ◽  
pp. 119500
Author(s):  
Fereshteh Asgharzadeh ◽  
Alireza Hashemzadeh ◽  
Farzad Rahmani ◽  
Atieh Yaghoubi ◽  
Seyedeh Elnaz Nazari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document