scholarly journals Cell‐Laden Multiple‐Step and Reversible 4D Hydrogel Actuators to Mimic Dynamic Tissue Morphogenesis

2021 ◽  
pp. 2004616
Author(s):  
Aixiang Ding ◽  
Oju Jeon ◽  
Rui Tang ◽  
Yu Bin Lee ◽  
Sang Jin Lee ◽  
...  
Author(s):  
Y. Pan

The D defect, which causes the degradation of gate oxide integrities (GOI), can be revealed by Secco etching as flow pattern defect (FPD) in both float zone (FZ) and Czochralski (Cz) silicon crystal or as crystal originated particles (COP) by a multiple-step SC-1 cleaning process. By decreasing the crystal growth rate or high temperature annealing, the FPD density can be reduced, while the D defectsize increased. During the etching, the FPD surface density and etch pit size (FPD #1) increased withthe etch depth, while the wedge shaped contours do not change their positions and curvatures (FIG.l).In this paper, with atomic force microscopy (AFM), a simple model for FPD morphology by non-crystallographic preferential etching, such as Secco etching, was established.One sample wafer (FPD #2) was Secco etched with surface removed by 4 μm (FIG.2). The cross section view shows the FPD has a circular saucer pit and the wedge contours are actually the side surfaces of a terrace structure with very small slopes. Note that the scale in z direction is purposely enhanced in the AFM images. The pit dimensions are listed in TABLE 1.


2018 ◽  
Vol 60 (5) ◽  
pp. 495-500 ◽  
Author(s):  
Wei Wang ◽  
Xiaotao Zheng ◽  
Linwei Ma ◽  
Wei Lin ◽  
Jiuyang Yu
Keyword(s):  

2003 ◽  
Vol 5 (3) ◽  
pp. 363 ◽  
Author(s):  
Slamet Sugiri

The main objective of this study is to examine a hypothesis that the predictive content of normal income disaggregated into operating income and nonoperating income outperforms that of aggregated normal income in predicting future cash flow. To test the hypothesis, linear regression models are developed. The model parameters are estimated based on fifty-five manufacturing firms listed in the Jakarta Stock Exchange (JSX) up to the end of 1997.This study finds that empirical evidence supports the hypothesis. This evidence supports arguments that, in reporting income from continuing operations, multiple-step approach is preferred to single-step one.


1980 ◽  
Vol 45 (11) ◽  
pp. 3101-3115 ◽  
Author(s):  
Ludmila Kubelková ◽  
Jana Nováková ◽  
Zdeněk Dolejšek ◽  
Pavel Jírů

The effect of decationation on the interaction of propylene and ethylene with the hydroxylated forms of HNaY zeolites has been studied. The compounds formed in the zeolite cavities were studied using their infrared spectra, the composition of the gaseous phase was followed by mass spectrometry. The results showed that among factors affecting the interaction with propylene properties of hydroxyl groups play the decisive role. With the increasing decationation of the zeolite the strength of the OH bond in the hydrogen complex of the large-cavity hydroxyls with propylene decreased and the rate of propylene oligomeration at 310 K as well as the isotope exchange rate of propylene-d6 with the zeolite hydroxyls at 570 K increased. The propylene isotope exchange reaction proceeded by the multiple-step mechanism. In the case of ethylene only the physical sorption with a non-specific character was observed at 310 K. The adsorbed amount increased with the increasing content of Na+ ions in the zeolite (with the decreasing decationation). A part of the adsorbed molecules formed hydrogen complexes with hydroxyls of large cavities. The observed lower weakening of the OH bond was in agreement with the lower basicity of ethylene if compared with propylene. The isotope exchange of ethylene-d4 with the zeolite hydroxyls proceeded by a single-step mechanism, it had an autocatalytic character and its rate was 70 times lower than that of the isotope exchange of propylene-d6 with OH.


2020 ◽  
Vol 10 (17) ◽  
pp. 9223-9239
Author(s):  
Ryan S. Terrill ◽  
Glenn F. Seeholzer ◽  
Jared D. Wolfe
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3255
Author(s):  
Lenka Kunčická ◽  
Michal Jambor ◽  
Adam Weiser ◽  
Jiří Dvořák

Cu–Zn–Pb brasses are popular materials, from which numerous industrially and commercially used components are fabricated. These alloys are typically subjected to multiple-step processing—involving casting, extrusion, hot forming, and machining—which can introduce various defects to the final product. The present study focuses on the detailed characterization of the structure of a brass fitting—i.e., a pre-shaped medical gas valve, produced by hot die forging—and attempts to assess the factors beyond local cracking occurring during processing. The analyses involved characterization of plastic flow via optical microscopy, and investigations of the phenomena in the vicinity of the crack, for which we used scanning and transmission electron microscopy. Numerical simulation was implemented not only to characterize the plastic flow more in detail, but primarily to investigate the probability of the occurrence of cracking based on the presence of stress. Last, but not least, microhardness in specific locations of the fitting were examined. The results reveal that the cracking occurring in the location with the highest probability of the occurrence of defects was most likely induced by differences in the chemical composition; the location the crack in which developed exhibited local changes not only in chemical composition—which manifested as the presence of brittle precipitates—but also in beta phase depletion. Moreover, as a result of the presence of oxidic precipitates and the hard and brittle alpha phase, the vicinity of the crack exhibited an increase in microhardness, which contributed to local brittleness.


Sign in / Sign up

Export Citation Format

Share Document