medical gas
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 38)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 14 (12) ◽  
pp. 1327
Author(s):  
Moritz Rosch ◽  
Kurt Lucas ◽  
Jozef Al-Gousous ◽  
Ulrich Pöschl ◽  
Peter Langguth

Hydrogen, as a medical gas, is a promising emerging treatment for many diseases related to inflammation and oxidative stress. Molecular hydrogen can be generated through hydrogen ion reduction by a metal, and magnesium-containing effervescent tablets constitute an attractive formulation strategy for oral delivery. In this regard, saccharide-based excipients represent an important class of potential fillers with high water solubility and sweet taste. In this study, we investigated the effect of different saccharides on the morphological and mechanical properties and the disintegration of hydrogen-generating effervescent tablets prepared by dry granulation. Mannitol was found to be superior to other investigated saccharides and promoted far more rapid hydrogen generation combined with acceptable mechanical properties. In further product optimization involving investigation of lubricant effects, adipic acid was selected for the optimized tablet, due to regulatory considerations.


2021 ◽  
Vol 2111 (1) ◽  
pp. 012016
Author(s):  
Nikko Aji Bayu Nugraha ◽  
Mashoedah

Abstract Medical Gas is an important component in the treatment of patients with COVID-19 disease. Medical gas is used to help COVID-19 patients to reduce the effects of respiratory disorders by providing oxygen ventilators to patients. With the surge in typical COVID-19 sufferers as of July 2021, the need for Oxygen in hospitals is getting higher. This is when the control and monitoring of medical gases in hospitals are late because the integrated system is very dangerous. Therefore, a system that can be used to control and monitor medical gases in hospitals that are integrated and automated and can be monitored by the Government and Medical Gas Producers. This is useful for anticipating the lack of availability of Medical Gas in hospitals. In this study, the system used IoT systems as a base in delivery and control. This system uses Arduino as a minimum system that reads the press sensor on the Medical Gas tube and regulates the valve. The data obtained is then sent to the Local Server to be processed and delivered to the Hospital Officer. Local Servers also send the data to cloud servers to be monitored by the government funds of several medical gas producers. This design can help in the process of controlling and monitoring Medical Gases in hospitals in hopes of minimizing the risk of delays in supplying medical gases to hospitals.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Duried Alwazeer ◽  
Franky Fuh-Ching Liu ◽  
Xiao Yu Wu ◽  
Tyler W. LeBaron

COVID-19 is a widespread global pandemic with nearly 185 million confirmed cases and about four million deaths. It is caused by an infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which primarily affects the alveolar type II pneumocytes. The infection induces pathological responses including increased inflammation, oxidative stress, and apoptosis. This situation results in impaired gas exchange, hypoxia, and other sequelae that lead to multisystem organ failure and death. As summarized in this article, many interventions and therapeutics have been proposed and investigated to combat the viral infection-induced inflammation and oxidative stress that contributes to the etiology and pathogenesis of COVID-19. However, these methods have not significantly improved treatment outcomes. This may partly be attributable to their inability at restoring redox and inflammatory homeostasis, for which molecular hydrogen (H2), an emerging novel medical gas, may complement. Herein, we systematically review the antioxidative, anti-inflammatory, and antiapoptotic mechanisms of H2. Its small molecular size and nonpolarity allow H2 to rapidly diffuse through cell membranes and penetrate cellular organelles. H2 has been demonstrated to suppress NF-κB inflammatory signaling and induce the Nrf2/Keap1 antioxidant pathway, as well as to improve mitochondrial function and enhance cellular bioenergetics. Many preclinical and clinical studies have demonstrated the beneficial effects of H2 in varying diseases, including COVID-19. However, the exact mechanisms, primary modes of action, and its true clinical effects remain to be delineated and verified. Accordingly, additional mechanistic and clinical research into this novel medical gas to combat COVID-19 complications is warranted.


2021 ◽  
pp. 67-68
Author(s):  
Ashish Yadav ◽  
Aman Kaur Saini ◽  
Susheela Taxak ◽  
Kanika Kanika ◽  
Nitish Nitish ◽  
...  

We encountered a case with sudden and complete interruption of fresh gas ow in anesthesia workstation. On inquiry, it was found out that there was water in the medical gas pipeline system and a simultaneous malfunction of the dryer mechanism that lead to this condition. This case report emphasizes the importance of understanding the capabilities and limitations of the drager machine as well as of any anesthesia workstations being used to administer anaesthesia. In addition, this demonstrates the importance to being able to provide immediate backup ventilation in case of 1 ventilator failure.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4549
Author(s):  
Sander Bekeschus ◽  
Steffen Emmert ◽  
Ramona Clemen ◽  
Lars Boeckmann

The first Therapeutic ROS and Immunity in Cancer (TRIC) meeting was organized by the excellence research center ZIK plasmatis (with its previous Frontiers in Redox Biochemistry and Medicine (FiRBaM) and Young Professionals’ Workshop in Plasma Medicine (YPWPM) workshop series in Northern Germany) and the excellence research program ONKOTHER-H (Rostock/Greifswald, Germany). The meeting showcased cutting-edge research and liberated discussions on the application of therapeutic ROS and immunology in cancer treatment, primarily focusing on gas plasma technology. The 2-day hybrid meeting took place in Greifswald and online from 15–16 July 2021, facilitating a wide range of participants totaling 66 scientists from 12 countries and 5 continents. The meeting aimed at bringing together researchers from a variety of disciplines, including chemists, biochemists, biologists, engineers, immunologists, physicists, and physicians for interdisciplinary discussions on using therapeutic ROS and medical gas plasma technology in cancer therapy with the four main sessions: “Plasma, Cancer, Immunity”, “Plasma combination therapies”, “Plasma risk assessment and patients studies”, and “Plasma mechanisms and treated liquids in cancer”. This conference report outlines the abstracts of attending scientists submitted to this meeting.


Redox Biology ◽  
2021 ◽  
pp. 102116
Author(s):  
Sander Bekeschus ◽  
Thomas von Woedtke ◽  
Steffen Emmert ◽  
Anke Schmidt
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3255
Author(s):  
Lenka Kunčická ◽  
Michal Jambor ◽  
Adam Weiser ◽  
Jiří Dvořák

Cu–Zn–Pb brasses are popular materials, from which numerous industrially and commercially used components are fabricated. These alloys are typically subjected to multiple-step processing—involving casting, extrusion, hot forming, and machining—which can introduce various defects to the final product. The present study focuses on the detailed characterization of the structure of a brass fitting—i.e., a pre-shaped medical gas valve, produced by hot die forging—and attempts to assess the factors beyond local cracking occurring during processing. The analyses involved characterization of plastic flow via optical microscopy, and investigations of the phenomena in the vicinity of the crack, for which we used scanning and transmission electron microscopy. Numerical simulation was implemented not only to characterize the plastic flow more in detail, but primarily to investigate the probability of the occurrence of cracking based on the presence of stress. Last, but not least, microhardness in specific locations of the fitting were examined. The results reveal that the cracking occurring in the location with the highest probability of the occurrence of defects was most likely induced by differences in the chemical composition; the location the crack in which developed exhibited local changes not only in chemical composition—which manifested as the presence of brittle precipitates—but also in beta phase depletion. Moreover, as a result of the presence of oxidic precipitates and the hard and brittle alpha phase, the vicinity of the crack exhibited an increase in microhardness, which contributed to local brittleness.


AVITEC ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Patrisius Kusi Olla ◽  
Wilia Azhar

Peak Flow Meter (PFM) is a tool to measure the amount of air flow in the airway (PFR) and to detect asthma. The output value of PFR can be influenced by several factors, such as age, respiratory muscle strength, height and gender. In this research, airway measurements are used to measure the condition of patients suffering from asthma. The author aims to make this tool so that it can find out how to design and make a peak flow meter output sound tool, measure the peak current and can know how the MPXV7002DP sensor works in regulating output in the form of sound. The method used by the author is to design or make a tool peak flow meter output sound. This MPXV7002DP sensor works when the sensor receives air blows from the flow sensor which automatically reads the highest air pressure from the breath. The test results using the VT Mobile Medical Gas Flow Analyzer prove that the largest percentage error is 2.4%, with the blowing rate on the Peak Flow Meter is 64.0 lpm and the blowing rate on VT mobile is 62.50 lpm. Therefore, this tool can be said to be very certain to detect asthma. Then it can be concluded that the peak flow meter is feasible and meets the specified requirements.Peak Flow Meter (PFM) is a tool to measure the amount of air flow in the airway (PFR) and to detect asthma. The value of PFR can be influenced by several factors such as age, respiratory muscle strength, height and gender. Airway measurements are used to measure the condition of patients suffering from asthma. The author aims to make this tool so that it can find out how to design and make a peak flow meter output sound tool, measure the peak current and can know how the MPXV7002DP sensor works in regulating output in the form of sound. The method used by the author is to design or make a tool peak flow meter output sound. This MPXV7002DP sensor works when the sensor receives air blows from the flow sensor which automatically reads the highest air pressure from the breath. The test results using the VT Mobile Medical Gas Flow Analyzer prove that the largest percentage error is 2.4%, with the blowing rate on the Peak Flow Meter is 64.0 lpm and the blowing rate on VT mobile is 62.50 lpm, so this tool can be said to be very certain to detect asthma. Then it can be concluded that the peak flow meter is feasible and meets the specified requirements.


Sign in / Sign up

Export Citation Format

Share Document