scholarly journals Mass concentration and size distribution of particles released from harvesting and biomass burning of sugarcane

ael ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. e20028
Author(s):  
Sanku Dattamudi ◽  
Jim J. Wang ◽  
Syam K. Dodla ◽  
Ronald DeLaune ◽  
April Hiscox ◽  
...  
2016 ◽  
Vol 9 (1) ◽  
pp. 103-114 ◽  
Author(s):  
G. I. Gkatzelis ◽  
D. K. Papanastasiou ◽  
K. Florou ◽  
C. Kaltsonoudis ◽  
E. Louvaris ◽  
...  

Abstract. An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50–60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15–20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA is of extremely low volatility.


2014 ◽  
Vol 14 (17) ◽  
pp. 24349-24385 ◽  
Author(s):  
K. M. Sakamoto ◽  
J. D. Allan ◽  
H. Coe ◽  
J. W. Taylor ◽  
T. J. Duck ◽  
...  

Abstract. Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number size-distributions in climate model inventories lead to uncertainties in the CCN concentrations and forcing estimates derived from these models. The BORTAS-B measurement campaign was designed to sample boreal biomass-burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size-distribution of aged biomass-burning emissions (aged ∼1–2 days) from boreal wildfires in Northwestern Ontario. The composite median size-distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter), σ = 1.7, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.05–0.18 μg m−3 ppbv−1 with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA production/evaporation within the aged plume over the sampling period. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size-distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We estimate that the fresh-plume median diameter was in the range of 59–94 nm with modal widths in the range of 1.7–2.8 (the ranges are due to uncertainty in the entrainment rate). Thus, the size of the freshly emitted particles is relatively unconstrained due to the uncertainties in the plume dilution rates.


2012 ◽  
Vol 12 (4) ◽  
pp. 1681-1700 ◽  
Author(s):  
R. M. Healy ◽  
J. Sciare ◽  
L. Poulain ◽  
K. Kamili ◽  
M. Merkel ◽  
...  

Abstract. An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.


2021 ◽  
Author(s):  
Fumio Nakazawa ◽  
Kumiko Goto-Azuma

<p>The storage of melted snow and/or ice samples from snow pits and ice cores in a refrigerator for long durations may be limited by an increase in particle concentration caused by microbial growth after approximately 1–2 weeks. In this study, we examined an ultraviolet (UV) disinfection method for the storage of melted snow and/or ice samples. Surface snow obtained from Glacier No. 31 in the Suntar-Khayata Range, eastern Siberia, Russia was divided into two portions for UV treatment and untreated controls. Particle concentrations in the samples were measured using a Coulter counter (Multisizer 4e; Beckman Coulter, USA). Whereas the particle concentration in untreated samples increased, no obvious increase was observed over 53 days in the samples subjected to UV treatment. In addition, the original particle concentrations were unaffected by UV treatment. These findings indicate that the antimicrobial effect of UV radiation is effective for long-term sample storage of melted water samples. A detailed analysis of the particle size distribution for untreated samples indicated that particles of 0.7–1.2 µm appeared within the first 7–14 days. Measurements using a viable particle counter (XL-10BT2 and XL-28A1; RION Co. Ltd., Japan) confirmed that these were biological particles, suggesting that microbial growth occurs during this period. Subsequently, the particles shifted to a smaller size and a higher concentration, suggesting that the decomposition of microorganisms occurred in the water samples. Therefore, the size distribution of particles in untreated samples reflected the growth and decomposition of microorganisms over time.</p>


Sign in / Sign up

Export Citation Format

Share Document