scholarly journals Electrospray-Assisted Fabrication of Moisture-Resistant and Highly Stable Perovskite Solar Cells at Ambient Conditions

2017 ◽  
Vol 7 (18) ◽  
pp. 1700210 ◽  
Author(s):  
Shalinee Kavadiya ◽  
Dariusz M. Niedzwiedzki ◽  
Su Huang ◽  
Pratim Biswas
2017 ◽  
Vol 5 (42) ◽  
pp. 22325-22333 ◽  
Author(s):  
Isabella Poli ◽  
Salvador Eslava ◽  
Petra Cameron

Tetra-butylammonium cations have been partially substituted for methylammonium cations in perovskite thin films. The stability of devices stored under ambient conditions was enhanced by the presence of TBA and cells with high mol% TBA were found to have reasonable efficiencies while being semi-transparent.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shun-Chang Liu ◽  
Chen-Min Dai ◽  
Yimeng Min ◽  
Yi Hou ◽  
Andrew H. Proppe ◽  
...  

AbstractIn lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a perovskite-like antibonding VBM arising from Ge 4s-Se 4p coupling; and that it exhibits similarly shallow bulk defects combined with high stability. We find that the deep defect density in bulk GeSe is ~1012 cm−3. We devise therefore a surface passivation strategy, and find that the resulting GeSe solar cells achieve a certified power conversion efficiency of 5.2%, 3.7 times higher than the best previously-reported GeSe photovoltaics. Unencapsulated devices show no efficiency loss after 12 months of storage in ambient conditions; 1100 hours under maximum power point tracking; a total ultraviolet irradiation dosage of 15 kWh m−2; and 60 thermal cycles from −40 to 85 °C.


2021 ◽  
Vol 5 (20) ◽  
pp. 7628-7637
Author(s):  
Pengyun Zhang ◽  
Ningxia Gu ◽  
Xiang Chen ◽  
Lixin Song ◽  
Pingfan Du ◽  
...  

In this contribution, PSCs with a high efficiency and good stability are fabricated under ambient conditions without a glove box via introducing triethyl phosphate (TEP) into a perovskite through an antisolvent.


2020 ◽  
Vol 8 (18) ◽  
pp. 7132-7138 ◽  
Author(s):  
Lidia Contreras-Bernal ◽  
Antonio Riquelme ◽  
Juan Jesús Gallardo ◽  
Javier Navas ◽  
Jesús Idígoras ◽  
...  

2016 ◽  
Vol 9 (5) ◽  
pp. 1655-1660 ◽  
Author(s):  
Daniel Bryant ◽  
Nicholas Aristidou ◽  
Sebastian Pont ◽  
Irene Sanchez-Molina ◽  
Thana Chotchunangatchaval ◽  
...  

Here, we demonstrate that light and oxygen-induced degradation is the main reason for the low operational stability of methylammonium lead triiodide (MeNH3PbI3) perovskite solar cells exposed to ambient conditions.


Author(s):  
Ming-Chung Wu ◽  
Ruei-Yu Kuo ◽  
Yin-Hsuan Chang ◽  
Shih-Hsuan Chen ◽  
Ching-Mei Ho​ ◽  
...  

Abstract Objectives Toxic lead and poor stability are the main obstacles of perovskite solar cells. Lead-free silver bismuth iodide (SBI) was first attempted as solar cells photovoltaic materials in 2016. However, the short-circuit current of the SBI rudorffite materials is commonly below 10 mA/cm2, limiting the overall photovoltaic performance. Here, we present a chemical composition engineering to enhance the photovoltaic performance. Methods In this study, we incorporated a series of alkali metal cations (Li+, Na+, K+, Rb+, and Cs+) into Ag3BiI6 absorbers to investigate the effects on the photovoltaic performance of rudorffite solar cells. Results Cs+ doping improved VOC and Na+ doping showed an obvious enhancement in JSC. Therefore, we co-doped Na+ and Cs+ into SBI (Na/Cs-SBI) as the absorber and investigated the crystal structure, surface morphology, and optical properties. The photo-assisted Kelvin probe force microscopy (photo-KPFM) was used to measure surface potential and verified that Na/Cs doping could reduce the electron trapping at the grain boundary and facilitate electron transportation. Conclusion Na/Cs-SBI reduced the electron-holes pairs recombination and promoted the carrier transport of rudorffite solar cells. Finally, the Na/Cs-SBI rudorffite solar cell exhibited a PCE of 2.50%, a 46.0% increase to the SBI device (PCE = 1.71%), and was stable in ambient conditions for over 6 months.


2018 ◽  
Vol 67 ◽  
pp. 01022 ◽  
Author(s):  
Michael Hariadi ◽  
Istighfari Dzikri ◽  
Retno Wigajatri Purnamaningsih ◽  
Nji Raden Poespawati

Indonesia is an archipelagic nation that has many small islands where the average load is low and currently supplied by diesel power generators. The drawbacks from these generators are cost constraints from its operation. Solar cells are the solution of this problem with the support of daily average radiation in Indonesia of 4.8 kWh/m2/day. There has been a lot of technology for the construction of solar cells such as silicon based, copper indium gallium selenide (CIGS), which was already successfully commercialized. However, these technologies have been obsolete and started to reach its maximum potential. Perovskite solar cells have a very high future potential, due to the increase on the efficiency of this technology in a relatively short amount of time. The current challenge for the fabrication of perovskite solar cell is the material cost and fabrication cost. This paper discussed the low-cost fabrication of perovskite solar cell using only spin coating deposition method and relatively also low-cost materials for the structure of the perovskite solar cell itself. As a result, we achieve perovskite solar cell with VOC of 0.6 V, ISC of 13 mA, FF of 0.28, and 1.2% efficiency.


2019 ◽  
Author(s):  
Lidia Contreras-Bernal ◽  
Antonio Riquelme ◽  
Juan Jesús Gallardo ◽  
Javier Navas ◽  
Jesús Idígoras ◽  
...  

Author(s):  
Ersan Y. Muslih ◽  
Md. Shahiduzzaman ◽  
Md. Akhtaruzzaman ◽  
Mohammad Ismail Hossain ◽  
LiangLe Wang ◽  
...  

Abstract Nickel oxide (NiOx) hole transport layer was made from nickel oxide powder by a simple process and non-stabilizer or chelating agent. We used ethanol as main solvent and nitric acid less than 2% as co-solvent. The formation reaction mechanism of NiOx thin film was also studied. Perovskite solar cells (PSCs) with the optimum thickness of 70 nm exhibited power conversion efficiency as high as 12.99%, which is superior to those of PSCs with their counterparts. The moisture stability of NiOx based device (non-encapsulated) remained above 70% of their initial output after 700h storage at ambient conditions.


Author(s):  
Rabindranath Garai ◽  
Ritesh Kant Gupta ◽  
Maimur Hossain ◽  
Parameswar K Iyer

Recently, organic-inorganic hybrid perovskite solar cells (PSCs) have experienced a rapid growth in terms of efficiency. However, the instability of hybrid perovskite materials towards ambient conditions restricts its commercialization. Formation...


Sign in / Sign up

Export Citation Format

Share Document