Water‐use efficiency and greenhouse gas emissions of rice affected by water saving and nitrogen reduction

2021 ◽  
Author(s):  
Hong Shi ◽  
Shuo Cai ◽  
Zhanxue Sun ◽  
Yuanzhi Shi
Author(s):  
Y. Li ◽  
S. Yi ◽  
Y. Lin ◽  
S. Liu

This paper proposes an optimization method based on the RAGA model. Taking rice from a cold area as the research object, this article selects irrigation volume, nitrogen application volume, and biochar application volume as experimental factors, and rice yield, water use efficiency, greenhouse gas emission comprehensive warming potential as influencing indicators. The research design is D311 Field trials by 3 factors of 5 levels of saturation. Hence, we can obtain the data on rice yield, water use efficiency, greenhouse gas emissions and comprehensive warming potential under different levels of water and fertilizer, and biochar application, and regression equations were established respectively. The RAGA model was used to simulate the regression equations. The optimal combination of water and fertilizer, and biochar was obtained as follows: irrigation amount is 7230 m3.hm-2, nitrogen fertilizer application amount is 92.13 kg.hm-2, and biochar application amount is 30 t.hm-2. The optimal rice yield obtained under this combination is 9452.20 kg.hm-2. The water use efficiency is 1.94 kg.m-3, and the comprehensive warming potential of greenhouse gas emissions is 4546.73 kg.hm-2. The combined application of water and fertilizer, and biochar optimized by this model can provide a theoretical basis for achieving high yield, water-saving, and emission reduction of rice in cold areas, and it can also provide a reliable calculation method and idea for solving similar optimization problems in the field of agricultural production.


2016 ◽  
Vol 11 (11) ◽  
pp. 114006 ◽  
Author(s):  
Michael J Walsh ◽  
Léda Gerber Van Doren ◽  
Deborah L Sills ◽  
Ian Archibald ◽  
Colin M Beal ◽  
...  

2016 ◽  
Vol 74 (5) ◽  
pp. 1106-1115 ◽  
Author(s):  
L. Mu ◽  
L. Fang ◽  
H. Wang ◽  
L. Chen ◽  
Y. Yang ◽  
...  

Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004–2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Yongli Zhang ◽  
Yu Shi ◽  
Zhenwen Yu

AbstractThis study aims to investigate optimization of the basal-top-dressing nitrogen ratio for improving winter wheat grain yield, nitrogen use efficiency, water use efficiency and physiological parameters under supplemental irrigation. A water-saving irrigation (SI) regime was established and sufficient irrigation (UI) was used as a control condition. The split-nitrogen regimes used were based on a identical total nitrogen application rate of 240 kg ha−1 but were split in four different proportions between sowing and the jointing stage; i.e. 10:0 (N1), 7:3 (N2), 5:5 (N3) and 3:7 (N4). Compared with the N1, N2 and N4 treatments, N3 treatment increased grain yield, nitrogen and water use efficiencies by 5.27–17.75%, 5.68–18.78% and 5.65–31.02%, respectively, in both years. The yield advantage obtained with the optimized split-nitrogen fertilizer application may be attributable to greater flag leaf photosynthetic capacity and grain-filling capacity. Furthermore, the N3 treatment maintained the highest nitrogen and water use efficiencies. Moreover, we observed that water use efficiency of SI compared with UI increased by 9.75% in 2016 and 10.79% in 2017, respectively. It can be concluded that SI along with a 5:5 basal-top-dressing nitrogen ratio should be considered as an optimal fertigation strategy for both high grain yield and efficiency in winter wheat.


2020 ◽  
Vol 704 ◽  
pp. 135375 ◽  
Author(s):  
Aline Peregrina Puga ◽  
Priscila Grutzmacher ◽  
Carlos Eduardo Pellegrino Cerri ◽  
Victor Sanches Ribeirinho ◽  
Cristiano Alberto de Andrade

Sign in / Sign up

Export Citation Format

Share Document