N‐efficient cotton genotype grown under low nitrogen shows relatively large root system, high biomass accumulation and nitrogen metabolism

2021 ◽  
Author(s):  
Asif Iqbal ◽  
Dong Qiang ◽  
Wang Xiangru ◽  
Gui Huiping ◽  
Niu Jing ◽  
...  
2020 ◽  
Vol 64 ◽  
pp. 289-301
Author(s):  
M. YAN ◽  
J. LUO ◽  
L. LIANG ◽  
L. CHEN ◽  
Y.Y. CAO ◽  
...  

Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 460 ◽  
Author(s):  
Juan Eduardo Sosa-Hernández ◽  
Laura Isabel Rodas-Zuluaga ◽  
Carlos Castillo-Zacarías ◽  
Magdalena Rostro-Alanís ◽  
Reynaldo de la Cruz ◽  
...  

Several factors have the potential to influence microalgae growth. In the present study, nitrogen concentration and light intensity were evaluated in order to obtain high biomass production and high phycoerythrin accumulation from Porphyridium purpureum. The range of nitrogen concentrations evaluated in the culture medium was 0.075–0.450 g L−1 and light intensities ranged between 30 and 100 μmol m−2 s−1. Surprisingly, low nitrogen concentration and high light intensity resulted in high biomass yield and phycoerythrin accumulation. Thus, the best biomass productivity (0.386 g L−1 d−1) and biomass yield (5.403 g L−1) were achieved with NaNO3 at 0.075 g L−1 and 100 μmol m−2 s−1. In addition, phycoerythrin production was improved to obtain a concentration of 14.66 mg L−1 (2.71 mg g−1 of phycoerythrin over dry weight). The results of the present study indicate that it is possible to significantly improve biomass and pigment production in Porphyridium purpureum by limiting nitrogen concentration and light intensity.


2020 ◽  
Vol 21 (3) ◽  
pp. 774
Author(s):  
Xuemei Xiao ◽  
Jian Lv ◽  
Jianming Xie ◽  
Zhi Feng ◽  
Ning Ma ◽  
...  

Autotoxicity of root exudates is one of the main reasons for consecutive monoculture problem (CMP) in cucumber under greenhouse cultivation. Rootstock grafting may improve the tolerance of cucumber plants to autotoxic stress. To verify the enhanced tolerance to autotoxic stress and illuminate relevant molecular mechanism, a transcriptomic comparative analysis was performed between rootstock grafted (RG) and non-grafted (NG) cucumber plants by a simulation of exogenous cinnamic acid (CA). The present study confirmed that relatively stable plant growth, biomass accumulation, chlorophyll content, and photosynthesis was observed in RG than NG under CA stress. We identified 3647 and 2691 differentially expressed genes (DEGs) in NG and RG cucumber plants when compared to respective control, and gene expression patterns of RNA-seq was confirmed by qRT-PCR. Functional annotations revealed that DEGs response to CA stress were enriched in pathways of plant hormone signal transduction, MAPK signaling pathway, phenylalanine metabolism, and plant-pathogen interaction. Interestingly, the significantly enriched pathway of photosynthesis-related, carbon and nitrogen metabolism only identified in NG, and most of DEGs were down-regulated. However, most of photosynthesis, Calvin cycle, glycolysis, TCA cycle, and nitrogen metabolism-related DEGs exhibited not or slightly down-regulated in RG. In addition, several stress-related transcription factor families of AP2/ERF, bHLH, bZIP, MYB. and NAC were uniquely triggered in the grafted cucumbers. Overall, the results of this study suggest that rootstock grafting improve the tolerance of cucumber plants to autotoxic stress by mediating down-regulation of photosynthesis, carbon, and nitrogen metabolism-related DEGs and activating the function of stress-related transcription factor. The transcriptome dataset provides an extensive sequence resource for further studies of autotoxic mechanism at molecular level.


1973 ◽  
Vol 26 (2) ◽  
pp. 319 ◽  
Author(s):  
D Aspinall ◽  
TN Singh ◽  
LG Paleg

Spraying a solution of abscisic acid (ABA) of O� 5 or 5� 0 ,..g/ml onto intact barley plants led to an accumulation of free proline in the leaves in certain experiments, as did suspension of the root system in an ABA solution. Proline did not accumulate in the roots of intact barley so treated even when the hormone was taken into the plant through the roots.


2019 ◽  
Vol 20 (17) ◽  
pp. 4212 ◽  
Author(s):  
Dongyun Ma ◽  
Honghuan Gao ◽  
Chenyang Du ◽  
Lingli Li ◽  
Wan Sun ◽  
...  

Storage protein distribution in wheat-grain endosperm is heterogeneous, but the underlying molecular mechanism remains unclear. Two parts of the endosperm region, the innermost endosperm (IE) region and the remaining endosperm (RE) region, grown under low nitrogen (LN) and high nitrogen (HN) treatments were used to perform metabolomic and transcriptomic analysis. We identified 533 and 503 differentially expressed genes (DEGs) with at least a two-fold expression change (p < 0.05) between IE and RE, among which 81 and 78 transcripts under LN and HN, respectively, related to carbon and nitrogen metabolism, and encoded transcription factors or proteins involved in post-translational modification (PTM). The significantly differentially abundant metabolites between IE and RE were mainly amino acids, N-compounds, carbohydrates, and nucleic acids. More upregulated transcripts and metabolites were identified in RE than IE under HN conditions, indicating that HN activates metabolism in the endosperm periphery. In addition to carbon and nitrogen metabolism, transcription factors and protein PTMs, such as phosphorylation and acetylation, might determine the protein heterogeneous distribution between IE and RE and its response to nitrogen fertilizer supply.


1999 ◽  
Vol 91 (5) ◽  
pp. 840-844 ◽  
Author(s):  
Vincent R. Pantalone ◽  
Gregory J. Rebetzke ◽  
Joseph W. Burton ◽  
Thomas E. Carter ◽  
Daniel W. Israel

Sign in / Sign up

Export Citation Format

Share Document