Effect of water saturation on gas slippage in circular and angular pores

AIChE Journal ◽  
2018 ◽  
Vol 64 (9) ◽  
pp. 3529-3541 ◽  
Author(s):  
Jing Li ◽  
Zhangxin Chen ◽  
Keliu Wu ◽  
Tao Zhang ◽  
Rui Zhang ◽  
...  
Fuel ◽  
2018 ◽  
Vol 225 ◽  
pp. 519-532 ◽  
Author(s):  
Jing Li ◽  
Zhangxin Chen ◽  
Keliu Wu ◽  
Ran Li ◽  
Jinze Xu ◽  
...  

Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050138
Author(s):  
QI ZHANG ◽  
XINYUE WU ◽  
QINGBANG MENG ◽  
YAN WANG ◽  
JIANCHAO CAI

Complicated gas–water transport behaviors in nanoporous shale media are known to be influenced by multiple transport mechanisms and pore structure characteristics. More accurate characterization of the fluid transport in shale reservoirs is essential to macroscale modeling for production prediction. This paper develops the analytical relative permeability models for gas–water two-phase in both organic and inorganic matter (OM and IM) of nanoporous shale using the fractal theory. Heterogeneous pore size distribution (PSD) of the shale media is considered instead of the tortuous capillaries with uniform diameters. The gas–water transport models for OM and IM are established, incorporating gas slippage described by second-order slip condition, water film thickness in IM, surface diffusion in OM, and the total organic carbon. Then, the presented model is validated by experimental results. After that, sensitivity analysis of gas–water transport behaviors based on pore structure properties of the shale sample is conducted, and the influence factors of fluid transport behaviors are discussed. The results show that the gas relative permeability is larger than 1 at the low pore pressure and water saturation. The larger pore pressure causes slight effect of gas slippage and surface diffusion on the gas relative permeability. The larger PSD fractal dimension of IM results in larger gas relative permeability and smaller water relative permeability. Besides, the large tortuosity fractal dimension will decrease the gas flux at the same water saturation, and the surface diffusion decreases with the increase of tortuosity fractal dimension of OM and pore pressure. The proposed models can provide an approach for macroscale modeling of the development of shale gas reservoirs.


2014 ◽  
Vol 962-965 ◽  
pp. 570-573
Author(s):  
Jian Yan ◽  
Xiao Bing Liang ◽  
Qian Wu ◽  
Qing Guo

Because of the gas slippage, the testing methods of stress sensitivity for gas reservoir should be different from that for oil reservoir. This text adopts the method that imposing back pressure on the outlet of testing core to weaken the gas slippage effect and tests the stress sensitivity of low permeability gas reservoirs, then analyzes the influence of permeability and water saturation on stress sensitivity. The results show that: low permeable and water-bearing gas reservoirs have strong stress sensitivity; the testing permeability has the power function relationship with net stress, compared to the exponential function, the fitting correlation coefficient is larger and more suited to the actual; the lower the permeability is and the higher water saturation is, the stronger the stress sensitivity is. The production of gas well is affected when considering the stress sensitivity, so the pressure dropping rate should be reasonable when low permeable gas reservoirs are developed. The results provide theoretical references for analyzing the well production and numerical simulation.


2019 ◽  
Vol 3 (1) ◽  
pp. 21
Author(s):  
Omar M. Basha

The effect of water on the solubility of syngas in hydrocarbons has typically been ignored when developing models for Fischer-Tropsch slurry bubble column reactors (SBCR), despite water being a major by-product. Therefore, a generalized correlation was developed to predict water solubility in hydrocarbons at high temperatures, and was used to calculate the effect of water saturation on H2 and CO solubility in hydrocarbons using the Span Wagner equation of state. The presence of water was shown to have a much more significant effect on H2 solubility in hydrocarbons, compared to CO.


2017 ◽  
Vol 133 (6) ◽  
pp. 107-115 ◽  
Author(s):  
Minami KATAOKA ◽  
Tianshu BAO ◽  
Kimihiro HASHIBA ◽  
Katsunori FUKUI

Geothermics ◽  
2017 ◽  
Vol 66 ◽  
pp. 1-12 ◽  
Author(s):  
Katharina Albert ◽  
Marcellus Schulze ◽  
Claudia Franz ◽  
Roland Koenigsdorff ◽  
Kai Zosseder

Sign in / Sign up

Export Citation Format

Share Document