Region‐specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species' range

2021 ◽  
Author(s):  
Natalie L. R. Love ◽  
Susan J. Mazer
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Chung-Huey Wu ◽  
Jeremy D. Holloway ◽  
Jane K. Hill ◽  
Chris D. Thomas ◽  
I-Ching Chen ◽  
...  

Abstract Both community composition changes due to species redistribution and within-species size shifts may alter body-size structures under climate warming. Here we assess the relative contribution of these processes in community-level body-size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages of geometrid moths (>8000 individuals) on Mt. Kinabalu, Borneo, in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size restructuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which is accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming.


Author(s):  
Mečislovas Žalakevicius ◽  
Vitas Stanevičius ◽  
Saulius Švažas ◽  
Galina Bartkevičienė

Of the 207 breeding species considered in Lithuania, results of the review show that with a north-easterly shift in their range, the 33 (16%) species breeding on the western, south-western and southern peripheries of their total species range may be significantly affected and are likely to become extinct in the region. Species in different habitat types may suffer differently, the most vulnerable bird species being those breeding in wet habitats. By contrast, communities in dry habitats hold the least number of potentially vulnerable breeding species. The remaining 174 species (84%), those with their breeding populations in the northern, north-eastern, eastern and north-western peripheries of their ranges and in the central part of species range, may benefit from climate warming and are unlikely to become extinct. The patchiness of the breeding range, the species breeding in wet habitats and the position of the southern, south-western and western peripheries of the entire species range are shown to be directly interconnected and, with further climate warming throughout the 21st century, these Lithuanian breeding species are likely to face the greatest risk of extinction. Additionally, climate change may not be the only threat to the species due to other factors, such as changes in land use. Bird diversity variation under the impact of climate change is a serious problem facing the world and we must find new effective measures of bird protection. Santrauka Apžvalga parodė, kad iš 207 Lietuvoje perinčių paukščių rūšių, jų arealams traukiantis šiaurės rytų kryptimi, 33 (16%) rūšių populiacijoms, perinčioms rūšies arealo vakarinėje, pietvakarinėje ir pietinėje periferijose, gresia pažeidimai, jos gali išnykti. Su įvairiomis buveinėmis susijusios rūšys gali patirti skirtingą žalą, iš jų labiausiai pažeidžiamos šlapiosiose buveinėse perinčios rūšys. Sausųjų buveinių bendrijų galimai pažeidžiamų rūšių skaičius, priešingai, mažiausias. Kitoms 174 rūšims (84%), kurių perinčios populiacijos yra rūšies arealo šiaurinėje, šiaurės rytinėje, rytinėje ir šiaurės vakarinėje periferijoje ir arealo centrinėje dalyje, klimato šilimas gali turėti teigiamos įtakos, tad jos neturėtų išnykti. Nustatyta, kad perėjimo arealo fragmentiškumas, paukščių perėjimas šlapiuosiuose biotopuose bei rūšies arealo vakarinėje, pietvakarinėje bei pietinėje periferijose yra tarpusavyje artimai susiję, ir, klimatui 21 amžiuje toliau šylant, šios Lietuvoje perinčios rūšys turėtų patirti didžiausią išnykimo pavojų. Be to, klimato kaita nėra vienintelis rūšių išnykimo pavojus, nes čia veikia ir kiti veiksniai, tokie kaip žemėnaudos pokyčiai. Paukščių įvairovės kaita keičiantis klimatui visame pasaulyje aktuali problema. Būtina ieškoti sprendimų, kaip sumažinti paukščiams kylantį pavojų, atsižvelgiant į rūšių biotopų pasirinkimo ekologijos specifiškumą, regioninius klimato kaitos pokyčius ir mastą, siekti pasirinkti efektyvius paukščių apsaugos ir paukščių rūšių reguliavimo būdus.


Author(s):  
Neveen Anwer Abdalla

The experiment has been conducted in the nursery of the Department of Horticulture and Landscape Design, College of Agriculture, the University of Basrah to study the effect of Spraying foliar of the biostimulants Izomen and Humus on the growth and flowering of Freesia plants. The corms in similar size were planted in pots with a diameter and height of 25 cm, which filled with 2.5 kg of sterilized loam soil. After 50 days of planting, the plants sprayed with Humus at 0, 1.5, 2.5 ml L-1 and after five days sprayed with Izomen at 0, 1.5, 2.5 ml L-1 The different concentrations of biostimulants are sprayed three times, the period between one spray and another 15 is days. The results showed that the spraying of Humus at 2.5 ml L-1 significantly increased the plant height, the number of leaves and the leaf content of chlorophyll recorded (29.56 cm, 8.33 and 58.43%) respectively. Moreover, it is recorded early the flowering date (130 days), and the highest flowering mean is (2.12 inflorescence/plant) and the highest period of the remained flowers on the plant and the vase life (10 and 8 days) respectively. The effects of both Humus and Izomen were similar. In addition to the highest mean of their interaction at 2.5 ml L -1for all the studied traits.


2000 ◽  
pp. 26-31
Author(s):  
E. I. Parfenova ◽  
N. M. Chebakova

Global climate warming is expected to be a new factor influencing vegetation redistribution and productivity in the XXI century. In this paper possible vegetation change in Mountain Altai under global warming is evaluated. The attention is focused on forest vegetation being one of the most important natural resources for the regional economy. A bioclimatic model of correlation between vegetation and climate is used to predict vegetation change (Parfenova, Tchebakova 1998). In the model, a vegetation class — an altitudinal vegetation belt (mountain tundra, dark- coniferous subalpine open woodland, light-coniferous subgolets open woodland, dark-coniferous mountain taiga, light-coniferous mountain taiga, chern taiga, subtaiga and forest-steppe, mountain steppe) is predicted from a combination of July Temperature (JT) and Complex Moisture Index (CMI). Borders between vegetation classes are determined by certain values of these two climatic indices. Some bioclimatic regularities of vegetation distribution in Mountain Altai have been found: 1. Tundra is separated from taiga by the JT value of 8.5°C; 2. Dark- coniferous taiga is separated from light-coniferous taiga by the CMI value of 2.25; 3. Mountain steppe is separated from the forests by the CMI value of 4.0. 4. Within both dark-coniferous and light-coniferous taiga, vegetation classes are separated by the temperature factor. For the spatially model of vegetation distribution in Mountain Altai within the window 84 E — 90 E and 48 N — 52 N, the DEM (Digital Elevation Model) was used with a pixel of 1 km resolution. In a GIS Package IDRISI for Windows 2.0, climatic layers were developed based on DEM and multiple regressions relating climatic indices to physiography (elevation and latitude). Coupling the map of climatic indices with the authors' bioclimatic model resulted into a vegetation map for the region of interest. Visual comparison of the modelled vegetation map with the observed geobotanical map (Kuminova, 1960; Ogureeva, 1980) showed a good similarity between them. The new climatic indices map was developed under the climate change scenario with summer temperature increase 2°C and annual precipitation increase 20% (Menzhulin, 1998). For most mountains under such climate change scenario vegetation belts would rise 300—400 m on average. Under current climate, the dark-coniferous and light-coniferous mountain taiga forests dominate throughout Mountain Altai. The chern forests are the most productive and floristically rich and are also widely distributed. Under climate warming, light-coniferous mountain taiga may be expected to transform into subtaiga and forest-steppe and dark-coniferous taiga may be expected to transform partly into chern taiga. Other consequences of warming may happen such as the increase of forest productivity within the territories with sufficient rainfall and the increase of forest fire occurrence over territories with insufficient rainfall.


Tellus B ◽  
2011 ◽  
Vol 63 (2) ◽  
Author(s):  
Kevin Chaefer ◽  
Tingjun Zhang ◽  
Lori Bruhwiler ◽  
Andrew P. Barrett

Sign in / Sign up

Export Citation Format

Share Document