scholarly journals Amyloid Pattern Similarity Score (AMPSS): A reference region free measure of amyloid PET deposition in Alzheimer’s disease

2020 ◽  
Vol 16 (S4) ◽  
Author(s):  
Lloyd Prosser ◽  
Thomas Veale ◽  
Ian B Malone ◽  
William Coath ◽  
Nick C Fox ◽  
...  
2013 ◽  
Vol 9 ◽  
pp. P18-P18
Author(s):  
Richard Margolin ◽  
Mark Schmidt ◽  
Keith Gregg ◽  
Andrea Les ◽  
Derek Hill ◽  
...  

2020 ◽  
Vol 17 ◽  
Author(s):  
Hyung-Ji Kim ◽  
Jae-Hong Lee ◽  
E-nae Cheong ◽  
Sung-Eun Chung ◽  
Sungyang Jo ◽  
...  

Background: Amyloid PET allows for the assessment of amyloid β status in the brain, distinguishing true Alzheimer’s disease from Alzheimer’s disease-mimicking conditions. Around 15–20% of patients with clinically probable Alzheimer’s disease have been found to have no significant Alzheimer’s pathology on amyloid PET. However, a limited number of studies had been conducted this subpopulation in terms of clinical progression. Objective: We investigated the risk factors that could affect the progression to dementia in patients with amyloid-negative amnestic mild cognitive impairment (MCI). Methods: This study was a single-institutional, retrospective cohort study of patients over the age of 50 with amyloidnegative amnestic MCI who visited the memory clinic of Asan Medical Center with a follow-up period of more than 36 months. All participants underwent brain magnetic resonance imaging (MRI), detailed neuropsychological testing, and fluorine-18[F18]-florbetaben amyloid PET. Results: During the follow-up period, 39 of 107 patients progressed to dementia from amnestic MCI. In comparison with the stationary group, the progressed group had a more severe impairment in verbal and visual episodic memory function and hippocampal atrophy, which showed an Alzheimer’s disease-like pattern despite the lack of evidence for significant Alzheimer’s disease pathology. Voxel-based morphometric MRI analysis revealed that the progressed group had a reduced gray matter volume in the bilateral cerebellar cortices, right temporal cortex, and bilateral insular cortices. Conclusion: Considering the lack of evidence of amyloid pathology, clinical progression of these subpopulation may be caused by other neuropathologies such as TDP-43, abnormal tau or alpha synuclein that lead to neurodegeneration independent of amyloid-driven pathway. Further prospective studies incorporating biomarkers of Alzheimer’s diseasemimicking dementia are warranted.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kaicheng Li ◽  
Xiao Luo ◽  
Qingze Zeng ◽  
Yerfan Jiaerken ◽  
Shuyue Wang ◽  
...  

AbstractThough sleep disturbance constitutes the risk factor for Alzheimer’s disease (AD), the underlying mechanism is still unclear. This study aims to explore the interaction between sleep disturbances and AD on brain function. We included 192 normal controls, 111 mild cognitive impairment (MCI), and 30 AD patients, with either poor or normal sleep (PS, NS, respectively). To explore the strength and stability of brain activity, we used static amplitude of low-frequency fluctuation (sALFF) and dynamic ALFF (dALFF) variance. Further, we examined white matter hyperintensities (WMH) and amyloid PET deposition, representing the vascular risk factor and AD-related hallmark, respectively. We observed that sleep disturbance significantly interacted with disease severity, exposing distinct effects on sALFF and dALFF variance. Interestingly, PS groups showed the dALFF variance trajectory of initially increased, then decreased and finally increased along the AD spectrum, while showing the opposite trajectory of sALFF. Further correlation analysis showed that the WMH burden correlates with dALFF variance in PS groups. Conclusively, our study suggested that sleep disturbance interacts with AD severity, expressing as effects of compensatory in MCI and de-compensatory in AD, respectively. Further, vascular impairment might act as important pathogenesis underlying the interaction effect between sleep and AD.


2021 ◽  
Author(s):  
Niklas Mattsson-Carlgren ◽  
Shorena Janelidze ◽  
Randall Bateman ◽  
Ruben Smith ◽  
Erik Stomrud ◽  
...  

Abstract Alzheimer’s disease is characterized by β-amyloid plaques and tau tangles. Plasma levels of phospho-tau217 (P-tau217) accurately differentiate Alzheimer’s disease dementia from other dementias, but it is unclear to what degree this reflects β-amyloid plaque accumulation, tau tangle accumulation, or both. In a cohort with post-mortem neuropathological data (N=88), both plaque and tangle density contributed independently to higher P-tau217. Several findings were replicated in a cohort with PET imaging (“BioFINDER-2”, N=426), where β-amyloid and tau PET were independently associated to P-tau217. P-tau217 correlated with β-amyloid PET (but not tau PET) in early disease stages, and with both β-amyloid and (more strongly) tau PET in late disease stages. Finally, P-tau217 mediated the association between β-amyloid and tau in both cohorts, especially for tau outside of the medial temporal lobe. These findings support the hypothesis that plasma P-tau217 is increased by both β-amyloid plaques and tau tangles and is congruent with the hypothesis that P-tau is involved in β-amyloid-dependent formation of neocortical tau tangles.


2019 ◽  
Vol 23 ◽  
pp. 101846 ◽  
Author(s):  
A. Chincarini ◽  
E. Peira ◽  
S. Morbelli ◽  
M. Pardini ◽  
M. Bauckneht ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 380
Author(s):  
Seunghee Na ◽  
Hyeonseok Jeong ◽  
Jong-Sik Park ◽  
Yong-An Chung ◽  
In-Uk Song

The neuropathology of Parkinson’s disease dementia (PDD) is heterogenous, and the impacts of each pathophysiology and their synergistic effects are not fully understood. The aim of this study was to evaluate the frequency and impacts of co-existence with Alzheimer’s disease in patients with PDD by using 18F-florbetaben PET imaging. A total of 23 patients with PDD participated in the study. All participants underwent 18F-florbetaben PET and completed a standardized neuropsychological battery and assessment of motor symptoms. The results of cognitive tests, neuropsychiatric symptoms, and motor symptoms were analyzed between the positive and negative 18F-florbetaben PET groups. Four patients (17.4%) showed significant amyloid burden. Patients with amyloid-beta showed poorer performance in executive function and more severe neuropsychiatric symptoms than those without amyloid-beta. Motor symptoms assessed by UPDRS part III and the modified H&Y Scale were not different between the two groups. The amyloid PET scan of a patient with PDD can effectively reflect a co-existing Alzheimer’s disease pathology. Amyloid PET scans might be able to help physicians of PDD patients showing rapid progression or severe cognitive/behavioral features.


2019 ◽  
Vol 6 (9) ◽  
pp. 1815-1824 ◽  
Author(s):  
Daniel Alcolea ◽  
Jordi Pegueroles ◽  
Laia Muñoz ◽  
Valle Camacho ◽  
Diego López‐Mora ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document