scholarly journals Pi‐Stacking Enhances Stability, Scalability of Formation, Control over Flexibility, and Circulation Time of Polymeric Filamentous Nanocarriers

2021 ◽  
pp. 2100063
Author(s):  
Sophia Li ◽  
Sharan Bobbala ◽  
Michael P. Vincent ◽  
Mallika Modak ◽  
Yugang Liu ◽  
...  
2020 ◽  
Author(s):  
Radu Talmazan ◽  
Klaus R. Liedl ◽  
Bernhard Kräutler ◽  
Maren Podewitz

We analyze the mechanism of the topochemically controlled difunctionalization of C60 and anthracene, where an anthracene molecule is transferred from one C60 monoadduct to another one under exclusive formation of equal amounts of C60 and the difficult to make antipodal C60 bisadduct. Our herein disclosed dispersion corrected DFT studies show the anthracene transfer to take place in a synchronous retro Diels-Alder/Diels-Alder reaction: an anthracene molecule dissociates from one fullerene under formation of an intermediate, while already undergoing stabilizing interactions with both neighboring fullerenes, facilitating the reaction kinetically. In the intermediate, a planar anthracene molecule is sandwiched between two neighboring fullerenes and forms equally strong "double-decker" type pi-pi stacking interactions with both of these fullerenes. Analysis with the distorsion interaction model shows that the anthracene unit of the intermediate is almost planar with minimal distorsions. This analysis sheds light on the existence of noncovalent interactions engaging both faces of a planar polyunsaturated ring and two convex fullerene surfaces in an unprecedented 'inverted sandwich' structure. Hence, it sheds light on new strategies to design functional fullerene based materials.<br>


2020 ◽  
Vol 17 ◽  
Author(s):  
Dan Zou ◽  
Yajun Weng ◽  
Ping Yang

Background: How to achieve high targeting efficiency for drug delivery system is still one of the most important issues that tumor diagnosis and non-surgical therapies faced. Although nanoparticle-based drug delivery system made an amount of progress in extending circulation time, improving targetability, controlled drug release etc., yet the targeting efficiency remained low, and the development was limited to reduce side effects with overall survival rates unchanged or improved a little. Objective: This paper aims to review current researches on the cell-driven drug delivery systems, and discuss the potential obstacles and directions for cell-based cancer therapies and diagnosis. Methods: More than one hundred references were collected, and this paper focused on red blood cells, monocytes, macrophages, neutrophils, natural killer cells, T lymphocytes, mesenchymal stem cells, cell membrane, artificial cells and extracellular vesicles, then summarized 1) the utilizable properties, 2) balancing cargo-loading amounts and cell function, 3) cascade strategies for targetability improvement. Main findings: circulatory cells and their derivatives were featured by good biocompatibility, long circulation time in blood, unique chemo-migration and penetration ability. On the base of backpack and encapsulation approach, cargo loading amounts and cell function could be balanced through regulating membrane receptors, particle material/size/shape/structure and incubation temperature, etc. The cell-driven drug delivery system met most of the demands that nanoparticle-based delivery system failed to for effective tumortropic delivery. Conclusion: Despite of new challenges, cell-driven drug delivery system generally brought great benefits to and shed a light on for cancer therapy and diagnosis.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 129719-129733 ◽  
Author(s):  
Yu Ding ◽  
Xiangke Wang ◽  
Yirui Cong ◽  
Huiming Li

Sign in / Sign up

Export Citation Format

Share Document