Reversible Photoswitching of a Spin-Crossover Molecular Complex in the Solid State at Room Temperature

2015 ◽  
Vol 127 (44) ◽  
pp. 13168-13172 ◽  
Author(s):  
Benedikt Rösner ◽  
Magdalena Milek ◽  
Alexander Witt ◽  
Benoît Gobaut ◽  
Piero Torelli ◽  
...  
2015 ◽  
Vol 54 (44) ◽  
pp. 12976-12980 ◽  
Author(s):  
Benedikt Rösner ◽  
Magdalena Milek ◽  
Alexander Witt ◽  
Benoît Gobaut ◽  
Piero Torelli ◽  
...  

2021 ◽  
Author(s):  
Malte Oppermann ◽  
Francesco Zinna ◽  
Jérôme Lacour ◽  
Majed Chergui

Iron-based spin-crossover (SCO) complexes hold tremendous promise as multifunctional switches in molecular devices. However, real-world technological applications require the excited high-spin (HS) state to be kinetically stable – a feature that has only been achieved at cryogenic temperatures in the light-induced excited spin-state trapping effect. Here we demonstrate HS state trapping by controlling the chiral configuration of FeII(4,4’-dimethyl-2,2’-bipyridine)3 in solution, associated for stereocontrol with enantiopure ∆- or Λ-TRISPHAT anions. We characterize the HS state relaxation using a newly developed ultrafast circular dichroism technique in combination with transient absorption and anisotropy measurements. We find that the decay of the HS state is accompanied by ultrafast changes of its optical activity, reflecting the coupling to a symmetry-breaking torsional twisting mode, contrary to the commonly assumed picture. Furthermore, we show that the diastereoselective ion-pairing with the enantiopure anions suppresses the vibrational population of the identified twisting mode, thereby achieving a four-fold extension of the HS lifetime. Transferred to the solid state, this novel strategy may thus significantly improve the kinetic stability of iron(II)-based magnetic switches at room temperature.


1993 ◽  
Vol 329 ◽  
Author(s):  
Michael Canva ◽  
Patrick Georges ◽  
Jean-Fran^ois Perelgritz ◽  
Alain Brun ◽  
Fréddric Chaput ◽  
...  

AbstractPhotoresistant laser dyes were trapped in silica based xerogel host matrices to obtain solid state tunable lasers. For this purpose very dense xerogel samples with improved chemical and physical properties were prepared at room temperature by the sol-gel technology. The as-prepared materials were polished to obtain optical quality surfaces and were used as new lasing media.Lasing action of such different dyes as rhodamine, perylene and pyrromethene doping dense sol-gel matrices was demonstrated. Efficiencies of 30 % or lifetimes of more than 100,000 shots were achieved with different new ≤dye dopant/host matrix≥ couples. Their different performances are reviewed and discussed.


2019 ◽  
Author(s):  
Meifeng Wang ◽  
Liyin Zhang ◽  
Yiqun Li ◽  
Liuqun Gu

<p></p>Anomerization of glycosides were rarely performed under basic condition due to lack of efficiency. Here an imidazole promoted anomerization of β-D-glucose pentaacetate was developed; and reaction could proceed in both organic solvents and solid state at room temperature. Although mechanism is not yet clear, this unprecedent mild anomerization in solid state may open a new promising way for stereoseletive anomerization of broad glucosides and materials design in the future..


1987 ◽  
Vol 52 (5) ◽  
pp. 1356-1361
Author(s):  
S. Abdel Rahman ◽  
M. Elsafty ◽  
A. Hattaba

The conformation of elastin-like peptides Boc-Ala-Pro-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM were examined in solution using circular dichroism at 30 °C, 50 °C, and 70 °C and in solid state by IR at room temperature. The studies show that the β-turn is a significant conformational feature for peptides under investigation in solution at 30 °C and 50 °C, but at 70 °C the tetra, hexa, and decapeptides show the CD feature characteristic of the β-structure while the dodecapeptide spectra show the presence of β-turn which indicates the stability of the β-turn at this chain length. The IR spectra show that in the solid state at room temperature all investigated peptides assume essentially a β-turn except the tetrapeptide which present evidence of antiparallel β-structure. The β-turn contribution in the IR spectra increases with the increase of the chain length of the peptide.


2021 ◽  
Author(s):  
Iurii Galadzhun ◽  
Rafal Kulmaczewski ◽  
Namrah Shahid ◽  
Oscar Cespedes ◽  
Mark J Howard ◽  
...  

[Fe(bpp)2][BF4]2 (bpp = 2,6-di{pyrazol-1-yl}pyridine) derivatives bearing a bent geometry of hexadec-1-ynyl or hexadecyl substituents pyrazole are isomorphous, and high-spin at room temperature. However, only the latter compound undergoes an abrupt,...


2021 ◽  
Vol 2 (1) ◽  
pp. 39-48
Author(s):  
Nguyen H. H. Phuc ◽  
Takaki Maeda ◽  
Tokoharu Yamamoto ◽  
Hiroyuki Muto ◽  
Atsunori Matsuda

A solid solution of a 100Li3PS4·xLi3PO4 solid electrolyte was easily prepared by liquid-phase synthesis. Instead of the conventional solid-state synthesis methods, ethyl propionate was used as the reaction medium. The initial stage of the reaction among Li2S, P2S5 and Li3PO4 was proved by ultraviolet-visible spectroscopy. The powder X-ray diffraction (XRD) results showed that the solid solution was formed up to x = 6. At x = 20, XRD peaks of Li3PO4 were detected in the prepared sample after heat treatment at 170 °C. However, the samples obtained at room temperature showed no evidence of Li3PO4 remaining for x = 20. Solid phosphorus-31 magic angle spinning nuclear magnetic resonance spectroscopy results proved the formation of a POS33− unit in the sample with x = 6. Improvements of ionic conductivity at room temperature and activation energy were obtained with the formation of the solid solution. The sample with x = 6 exhibited a better stability against Li metal than that with x = 0. The all-solid-state half-cell employing the sample with x = 6 at the positive electrode exhibited a better charge–discharge capacity than that employing the sample with x = 0.


Sign in / Sign up

Export Citation Format

Share Document