Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst

Author(s):  
Yi-jin Wu ◽  
Jian Yang ◽  
Teng-xiu Tu ◽  
Wei-qiong Li ◽  
Peng-fang Zhang ◽  
...  
2021 ◽  
Author(s):  
Yi-jin Wu ◽  
Jian Yang ◽  
Teng-xiu Tu ◽  
Wei-qiong Li ◽  
Peng-fang Zhang ◽  
...  

ChemSusChem ◽  
2017 ◽  
Vol 10 (22) ◽  
pp. 4544-4551 ◽  
Author(s):  
Wai Ling Kwong ◽  
Eduardo Gracia-Espino ◽  
Cheng Choo Lee ◽  
Robin Sandström ◽  
Thomas Wågberg ◽  
...  

2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


2021 ◽  
Vol 23 (10) ◽  
pp. 6298-6308
Author(s):  
Chan Gao ◽  
Xiaoyong Yang ◽  
Ming Jiang ◽  
Lixin Chen ◽  
Zhiwen Chen ◽  
...  

The combination of defect engineering and strain engineering for the modulation of the mechanical, electronic and optical properties of monolayer transition metal dichalcogenides (TMDs).


ACS Nano ◽  
2021 ◽  
Author(s):  
Hope Bretscher ◽  
Zhaojun Li ◽  
James Xiao ◽  
Diana Yuan Qiu ◽  
Sivan Refaely-Abramson ◽  
...  

2021 ◽  
Vol 2 (7) ◽  
pp. 2398-2407
Author(s):  
Joshua J. Brown ◽  
Youxiang Shao ◽  
Zhuofeng Ke ◽  
Alister J. Page

First-principles calculations predict the stability and mobility of vacancy defects in niobium perovskite oxynitrides, aiding defect engineering for enhanced photocatalysis.


Author(s):  
Mohammad Zafari ◽  
Arun S. Nissimagoudar ◽  
Muhammad Umer ◽  
Geunsik Lee ◽  
Kwang S. Kim

The catalytic activity and selectivity can be improved for nitrogen fixation by using hollow sites and vacancy defects in 2D materials, while a new machine learning descriptor accelerates screening of efficient electrocatalysts.


Sign in / Sign up

Export Citation Format

Share Document