scholarly journals Design of thermoelectric materials with high electrical conductivity, high Seebeck coefficient, and low thermal conductivity

Author(s):  
Hiroki Yoshihama ◽  
Hiromasa Kaneko
2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


2013 ◽  
Vol 743-744 ◽  
pp. 120-125
Author(s):  
Zhen Chen ◽  
Ye Mao Han ◽  
Min Zhou ◽  
Rong Jin Huang ◽  
Yuan Zhou ◽  
...  

In the present study, the glass microsphere dispersed Bi-Sb thermoelectric materials have been fabricated through mechanical alloying followed by pressureless sintering. The phase composition and the microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. Electrical conductivity, Seebeck coefficient and thermal conductivity were measured in the temperature range of 77~300 K. The ZT values were calculated according to the measurement results. The results showed that the electrical conductivity, Seebeck coefficient and thermal conductivity decreased by adding glass microsphere into Bi-Sb thermoelectric materials. However, the optimum ZT value of 0.24 was obtained at 260 K, which was increased 10% than that of the Bi-Sb matrix. So it is confirmed that the thermoelectric performance of Bi-Sb-based materials can be improved by adding moderate glass microspheres.


2009 ◽  
Vol 1181 ◽  
Author(s):  
Cydale Smith ◽  
Marcus Pugh ◽  
Hervie Martin ◽  
Rufus Durel Hill ◽  
Brittany James ◽  
...  

AbstractEffective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2sσ/ KTC, σ is the electrical conductivity T/KTC, where S is the Seebeck coefficient, T is the absolute temperature and KTC is the thermal conductivity. In this study we have prepared the thermoelectric generator device of Si/Si+Ge multi-layer superlattice films using the ion beam assisted deposition (IBAD). To determine the stoichiometry of the elements of Si and Ge in the grown multilayer films and the thickness of the grown multi-layer films Rutherford Backscattering Spectrometry (RBS) and RUMP simulation software package were used. The 5 MeV Si ion bombardments were performed to make quantum clusters in the multi-layer superlattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity.Keywords: Ion bombardment, thermoelectric properties, multi-nanolayers, Figure of merit.


2000 ◽  
Vol 626 ◽  
Author(s):  
M. Fornari ◽  
D. J. Singh ◽  
I. I. Mazin ◽  
J. L. Feldman

ABSTRACTThe key challenges in discovering new high ZT thermoelectrics are understanding how the nearly contradictory requirements of high electrical conductivity, high thermopower and low thermal conductivity can be achieved in a single material and based on this identifying suitable compounds. First principles calculations provide a material specific microscopic window into the relevant properties and their origins. We illustrate the utility of the approach by presenting specific examples of compounds belonging to the class of skutterudites that are or are not good thermoelectrics along with the microscopic reasons. Based on our computational exploration we make a suggestion for achieving higher values of ZT at room temperature in bulk materials, namely n-type La(Ru,Rh)4Sb12 with high La-filling.


Author(s):  
Hao Zhu ◽  
Zhou Li ◽  
Chenxi Zhao ◽  
Xingxing Li ◽  
Jinlong Yang ◽  
...  

Abstract Many layered superlattice materials intrinsically possess large Seebeck coefficient and low lattice thermal conductivity, but poor electrical conductivity because of the interlayer transport barrier for charges, which has become a stumbling block for achieving high thermoelectric performance. Herein, taking BiCuSeO superlattice as an example, it is demonstrated that efficient interlayer charge release can increase carrier concentration, thereby activating multiple Fermi pockets through Bi/Cu dual vacancies and Pb codoping. Experimental results reveal that the extrinsic charges, which are introduced by Pb and initially trapped in the charge-reservoir [Bi2O2]2+ sublayers, are effectively released into [Cu2Se2]2− sublayers via the channels bridged by Bi/Cu dual vacancies. This efficient interlayer charge release endows dual-vacancy- and Pb-codoped BiCuSeO with increased carrier concentration and electrical conductivity. Moreover, with increasing carrier concentration, the Fermi level is pushed down, activating multiple converged valence bands, which helps to maintain a relatively high Seebeck coefficient and yield an enhanced power factor. As a result, a high ZT value of ∼1.4 is achieved at 823 K in codoped Bi0.90Pb0.06Cu0.96SeO, which is superior to that of pristine BiCuSeO and solely doped samples. The present findings provide prospective insights into the exploration of high-performance thermoelectric materials and the underlying transport physics.


2015 ◽  
Vol 44 (5) ◽  
pp. 2285-2293 ◽  
Author(s):  
Jing Li ◽  
Li-Dong Zhao ◽  
Jiehe Sui ◽  
David Berardan ◽  
Wei Cai ◽  
...  

The thermoelectric properties of Na doped BaCu2Se2 were studied. The electrical conductivity of BaCu2Se2 was increased by 2 orders of magnitude through Na doping at the Ba sites, combined with a surprisingly low thermal conductivity; a ZT of 1.0 has been obtained for Ba0.925Na0.075Cu2Se2 at 773 K.


2020 ◽  
Vol 8 (27) ◽  
pp. 13812-13819 ◽  
Author(s):  
Tribhuwan Pandey ◽  
Arun S. Nissimagoudar ◽  
Avanish Mishra ◽  
Abhishek K. Singh

We predict that mixed valent indium compounds exhibit a combination of high electrical conductivity, high thermopower, and low thermal conductivity, resulting in a large thermoelectric figure of merit.


2009 ◽  
Vol 1181 ◽  
Author(s):  
Marcus Pugh ◽  
Rufus Durel Hill ◽  
Brittany James ◽  
Hervie Martin ◽  
Cydale Smith ◽  
...  

AbstractThe efficiency of the thermoelectric devices is limited by the properties of n- and p-type semiconductors. Effective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. In this study we prepared the thermoelectric generator device of SiO2/SiO2+Au multi-layer super-lattice films using the ion beam assisted deposition (IBAD). In order to determine the stoichiometry of the elements of SiO2 and Au in the grown multilayer films and the thickness of the grown multi-layer films Rutherford Backscattering Spectrometry (RBS) and RUMP simulation software package was used. The 5 MeV Si ion bombardments was performed to make quantum clusters in the multi-layer super-lattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric generator devices before and after Si ion bombardments we measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity for different fluences.


Sign in / Sign up

Export Citation Format

Share Document