Thermoelectric Generators of Sequentially Deposited Si/Si+Ge Nano-layered Superlattices

2009 ◽  
Vol 1181 ◽  
Author(s):  
Cydale Smith ◽  
Marcus Pugh ◽  
Hervie Martin ◽  
Rufus Durel Hill ◽  
Brittany James ◽  
...  

AbstractEffective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2sσ/ KTC, σ is the electrical conductivity T/KTC, where S is the Seebeck coefficient, T is the absolute temperature and KTC is the thermal conductivity. In this study we have prepared the thermoelectric generator device of Si/Si+Ge multi-layer superlattice films using the ion beam assisted deposition (IBAD). To determine the stoichiometry of the elements of Si and Ge in the grown multilayer films and the thickness of the grown multi-layer films Rutherford Backscattering Spectrometry (RBS) and RUMP simulation software package were used. The 5 MeV Si ion bombardments were performed to make quantum clusters in the multi-layer superlattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity.Keywords: Ion bombardment, thermoelectric properties, multi-nanolayers, Figure of merit.

2009 ◽  
Vol 1181 ◽  
Author(s):  
Marcus Pugh ◽  
Rufus Durel Hill ◽  
Brittany James ◽  
Hervie Martin ◽  
Cydale Smith ◽  
...  

AbstractThe efficiency of the thermoelectric devices is limited by the properties of n- and p-type semiconductors. Effective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. In this study we prepared the thermoelectric generator device of SiO2/SiO2+Au multi-layer super-lattice films using the ion beam assisted deposition (IBAD). In order to determine the stoichiometry of the elements of SiO2 and Au in the grown multilayer films and the thickness of the grown multi-layer films Rutherford Backscattering Spectrometry (RBS) and RUMP simulation software package was used. The 5 MeV Si ion bombardments was performed to make quantum clusters in the multi-layer super-lattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric generator devices before and after Si ion bombardments we measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity for different fluences.


2010 ◽  
Vol 1267 ◽  
Author(s):  
Marcus Pugh ◽  
S. Budak ◽  
Cydale Smith ◽  
John Chacha ◽  
Kudus Ogbara ◽  
...  

AbstractEffective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ or decreasing K. MeV ion bombardment caused defects and disorder in the film and the grain boundaries of these nano-scale clusters increase phonon scattering and increase the chance of an inelastic interaction and phonon annihilation. We have prepared 100 alternating layers of Si/Si+Ge nanolayered superlattice films using the ion beam assisted deposition (IBAD). The 5 MeV Si ions bombardments have been performed using the AAMU Pelletron ion beam accelerator to make quantum clusters in the nanolayered superlattice films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. We have characterized the thermoelectric thin films before and after Si ion bombardments as we measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity for different fluences


2010 ◽  
Vol 1267 ◽  
Author(s):  
John Chacha ◽  
S. Budak ◽  
Cydale Smith ◽  
Marcus Pugh ◽  
Kudus Ogbara ◽  
...  

AbstractThe performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing K. We have prepared 100 alternating multi-nano layer of SiO2/SiO2+Cu superlattice films using the ion beam assisted deposition (IBAD). The 5 MeV Si ions bombardments have been performed at the different fluences using the AAMU Pelletron ion beam accelerator to make quantum clusters in the multi-layer superlattice thin films to decrease the cross plane thermal conductivity increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric thin films before and after Si ion bombardments we have measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity for different fluences.


2008 ◽  
Vol 1102 ◽  
Author(s):  
S. Budak ◽  
S. Guner ◽  
T. Hill ◽  
M. Black ◽  
S. B. Judah ◽  
...  

AbstractThermoelectric materials are being important due to their application in both thermoelectric power generation and microelectronic cooling. The thermoelectric power generations convert the heat change to electricity. The waste of heat could be useful if the thermoelectric power generation is applied. Effective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. A high thermal conductivity causes too much heat leakage through heat conduction. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing K. In this study, we prepared thermoelectric generator devices of SiGe at the thickness of 112 nm using the ion beam assisted deposition (IBAD) system. Rutherford Backscattering Spectrometry (RBS) analysis was used for the elemental analysis. The 5 MeV Si ion bombardment was performed using the AAMU Pelletron ion beam accelerator to make quantum clusters in the film to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and electrical conductivity. To characterize the thermoelectric generator devices before and after Si ion bombardment we measured the cross plane Seebeck coefficient, electrical conductivity by Van der Pauw method, and thermal conductivity by 3w method for different fluences.


2008 ◽  
Vol 1102 ◽  
Author(s):  
S. Budak ◽  
S. Guner ◽  
C. Muntele ◽  
D. ILA

AbstractWe have deposited 50 nano-layers of 710 nm of SiO2/SiO2+ZrNiSn with a periodic structure consisting of alternating layers where each layer is about 14 nm thick. The purpose of this research is to generate nanolayers of nanostructures of ZrNiSn with SiO2 as host and as buffer layer using a combination of co-deposition and MeV ion bombardment taking advantage of the energy deposited in the MeV ions track to nucleate nanostructures. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/ĸ, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and ĸ is the thermal conductivity. ZT can be increased by increasing S, increasing σ, or decreasing ĸ. The electrical and thermal properties of the layered structures were studied before and after bombardment by 5 MeV Si ions at seven different fluences ranging from 1014 to 1015 ions/cm2 in order to form nanostructures in layers of SiO2 containing few percent of ZrNiSn. Rutherford Backscattering Spectrometry (RBS) was used to monitor elemental analysis of the film.


2010 ◽  
Vol 1267 ◽  
Author(s):  
S. Budak ◽  
Cydale Smith ◽  
John Chacha ◽  
Marcus Pugh ◽  
Kudus Ogbara ◽  
...  

AbstractThe performance of the thermoelectric devices and materials is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. ZT can be increased by increasing S, increasing σ or decreasing K. We have prepared 100 alternating nanolayered films of SiO2/SiO2+CoSb3 using the ion beam assisted deposition (IBAD). The 5 MeV Si ions bombardments have been performed using the AAMU Pelletron ion beam accelerator to make quantum clusters in the nanolayered superlattice films at the three different fluences to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. We have characterized 100 alternating nanolayered films of SiO2/SiO2+CoSb3 before and after Si ion bombardments as we measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity for three different fluences.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


2008 ◽  
Vol 1100 ◽  
Author(s):  
Sadik Guner ◽  
Satilmis Budak ◽  
Claudiu I Muntele ◽  
Daryush Ila

AbstractMonolayer thin films of YbBiPt and YBiPt have been produced with 560 nm and 394 nm thick respectively in house and their thermoelectric properties were measured before and after MeV ion bombardment. The energy of the ions were selected such that the bombarding Si ions stop in the silicon substrate and deposit only electronic energy by ionization in the deposited thin film. The bombardment by 5.0 MeV Si ions at various fluences changed the homogeneity as well as reducing the internal stress in the films thus affecting the thermal, electrical and Seebeck coefficient of thin films. The stoichiometry of the thin films was determined using Rutherford Backscattering Spectrometry, the thickness has been measured using interferometry and the electrical conductivity was measured using Van der Pauw method. Thermal conductivity of the thin films was measured using an in-house built 3ω thermal conductivity measurement system. Using the measured Seebeck coefficient, thermal conductivity and electrical conductivity we calculated the figure of merit (ZT). We will report our findings of change in the measured figure of merit as a function of bombardment fluence.


2008 ◽  
Vol 1074 ◽  
Author(s):  
Sadik Guner ◽  
Satilmis Budak ◽  
Claudiu I Muntele ◽  
Cydale C Smith ◽  
Daryush Ila

ABSTRACTWe have grown 100 periodic SiO2/SiO2+Ag multi-nano-layered systems where the SiO2+Ag layers were 7.26 nm and SiO2 buffer layer were 4 nm, total thickness is 563 nm. Using interferometer as well as in-situ thickness monitoring, we measured the thickness of the layers; using Rutherford Backscattering Spectrometry (RBS) measured the concentration and distribution of Ag in SiO2. The electrical conductivity, thermal conductivity and the Seebeck coefficient of the layered structure were measured at room temperature before and after bombardment by 5 MeV Si ions. The energy of the Si ions were chosen such that the ions are stopped in the silicon substrate and only electronic energy due to ionization is deposited in the layered structure. The electrical conductivity measured using Van der Pauw method. Thermal conductivity of the thin films was measured using an in-house built 3ω thermal conductivity measurement system. Using the measured Seebeck coefficient, thermal conductivity and electrical conductivity we calculated the figure of merit (ZT). We will report our findings of change in the figure of merit as a function of the bombardment fluence.


2006 ◽  
Vol 929 ◽  
Author(s):  
S. Budak ◽  
B. Zheng ◽  
C. Muntele ◽  
Z. Xiao ◽  
I. Muntele ◽  
...  

ABSTRACTWe made 50 and 100 periodic nano-layers of electro-cooling system consisting of SiO2/AuxSiO2(1−x) super lattice with Au layer deposited on both side as metal contact using Ion Beam Assisted Deposition (IBAD) system. The deposited multi-layer films have a periodic structure consisting of alternating layers where each layer is between 1-10 nm thick. The ultimate objective of this research is to tailor the figure of merit of layered structures used as thermoelectric generators. The super lattices were then bombarded by 5 MeV Si ion at different four fluences to form nano-cluster structure. The film thickness and stoichiometry were monitored by Rutherford Backscattering Spectrometry (RBS) before and after MeV bombardments. We measured the thermoelectric efficiency of the fabricated device before and after MeV bombardments. To accomplish this we measured the cross plane thermal conductivity by 3rd harmonic method, measured cross plane Seebeck coefficient, and measured electric conductivity using Van Der Pauw method before and after 5 MeV Si Bombardments. As predicted the electronic energy deposited due to ionization by MeV Si beam in its track produces nano-scale structures which disrupt and confine phonon transmission therefore reducing thermal conductivity, increasing electron density of state so as to increase Seebeck coefficient, and electric conductivity, thus increasing figure of merit. We will present our findings during the meeting.* Research sponsored by the Center for Irradiation of Materials, Alabama A&M University and by the AAMURI Center for Advanced Propulsion Materials under the contract number NAG8-1933 from NASA, and by National Science Foundation under Grant No. EPS-0447675.


Sign in / Sign up

Export Citation Format

Share Document