Where Should We Look For High Zt Materials: Suggestions From Theory.

2000 ◽  
Vol 626 ◽  
Author(s):  
M. Fornari ◽  
D. J. Singh ◽  
I. I. Mazin ◽  
J. L. Feldman

ABSTRACTThe key challenges in discovering new high ZT thermoelectrics are understanding how the nearly contradictory requirements of high electrical conductivity, high thermopower and low thermal conductivity can be achieved in a single material and based on this identifying suitable compounds. First principles calculations provide a material specific microscopic window into the relevant properties and their origins. We illustrate the utility of the approach by presenting specific examples of compounds belonging to the class of skutterudites that are or are not good thermoelectrics along with the microscopic reasons. Based on our computational exploration we make a suggestion for achieving higher values of ZT at room temperature in bulk materials, namely n-type La(Ru,Rh)4Sb12 with high La-filling.

2019 ◽  
Vol 21 (28) ◽  
pp. 15647-15655 ◽  
Author(s):  
Zhehao Sun ◽  
Kunpeng Yuan ◽  
Xiaoliang Zhang ◽  
Guangzhao Qin ◽  
Xiaojing Gong ◽  
...  

In this study, strain modulation of the lattice thermal conductivity of monolayer and bilayer penta-graphene (PG) at room temperature was investigated using first-principles calculations combined with the phonon Boltzmann transport equation.


Alloy Digest ◽  
1987 ◽  
Vol 36 (2) ◽  

Abstract Copper No. C80100 is a casting copper with high electrical conductivity (100% IACS). It has low room-temperature strength and hardness and medium-to-good ductility. It has excellent thermal conductivity and good resistance to corrosion, these characteristics make it highly suitable for many applications requiring good electrical and or thermal conductivity and resistance to corrosion and oxidation. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: Cu-521. Producer or source: Copper alloy foundries.


2020 ◽  
Vol 8 (27) ◽  
pp. 13812-13819 ◽  
Author(s):  
Tribhuwan Pandey ◽  
Arun S. Nissimagoudar ◽  
Avanish Mishra ◽  
Abhishek K. Singh

We predict that mixed valent indium compounds exhibit a combination of high electrical conductivity, high thermopower, and low thermal conductivity, resulting in a large thermoelectric figure of merit.


2016 ◽  
Vol 18 (37) ◽  
pp. 26275-26283 ◽  
Author(s):  
P. C. Sreeparvathy ◽  
V. Kanchana ◽  
G. Vaitheeswaran ◽  
N. E. Christensen

First principles calculations predict the promising thermoelectric material ZnGeSb2with a huge power factor (S2σ/τ) on the order of 3 × 1017W m−1K−2s−1, due to the ultra-high electrical conductivity scaled by a relaxation time of around 8.5 × 1025Ω−1m−1s−1, observed in its massive Dirac state.


Nanoscale ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 3330-3342 ◽  
Author(s):  
Zhehao Sun ◽  
Kunpeng Yuan ◽  
Zheng Chang ◽  
Shipeng Bi ◽  
Xiaoliang Zhang ◽  
...  

By performing first-principles calculations combined with the Boltzmann transport equation, we report a comprehensive study of the thermal and thermoelectric properties of monolayer triphosphides InP3, GaP3, SbP3 and SnP3.


RSC Advances ◽  
2020 ◽  
Vol 10 (70) ◽  
pp. 42628-42632
Author(s):  
Rajmohan Muthaiah ◽  
Fatema Tarannum ◽  
Roshan Sameer Annam ◽  
Avinash Singh Nayal ◽  
Swapneel Danayat ◽  
...  

In this work, we report a high thermal conductivity (k) of 162 W m−1 K−1 and 52 W m−1 K−1 at room temperature, along the directions perpendicular and parallel to the c-axis, respectively, of bulk hexagonal BC2P (h-BC2P), using first-principles calculations.


2000 ◽  
Vol 626 ◽  
Author(s):  
A. L. Pope ◽  
R. Gagnon ◽  
R. Schneidmiller ◽  
P. N. Alboni ◽  
R. T. Littleton ◽  
...  

ABSTRACTPartially due to their lack of periodic structure, quasicrystals have inherently low thermal conductivity on the order of 1 - 3 W/m-K. AlPdMn quasicrystals exhibit favorable room temperature values of electrical conductivity, 500–800 (Ω-cm)-1, and thermopower, 80 μV/K, with respect to thermoelectric applications. In an effort to further increase the thermopower and hopefully minimize the thermal conductivity via phonon scattering, quartenary Al71Pd21Mn8-XReX quasicrystals were grown. X-ray data confirms that the addition of a fourth element does not alter the quasiperiodicity of the sample. Al71Pd21Mn8-XReX quasicrystals of varying Re concentration were synthesized where x had values of 0, 0.08, 0.25, 0.4, 0.8, 2, 5, 6, and 8. Both thermal and electrical transport property measurements have been performed and are reported.


Author(s):  
Jinlong Ma ◽  
Baoling Huang ◽  
Wu Li ◽  
Xiaobing Luo

The thermal conductivities of the alloys of wurtzite AlN, GaN and InN are usually analyzed with the virtual crystal model based on the values of the constituent compounds. However, latest experiments and calculations reveal that the thermal conductivity of wurtzite InN is about three times larger than the previously used value. Thus it is necessary to reanalyze the thermal conductivities of these alloys. In this work, the intrinsic thermal conductivities of AlxGa1−xN, InxGa1−xN and InxAl1−xN are calculated with first-principles calculations along with the virtual crystal treatment. It is found that the thermal conductivities of these alloys are strongly suppressed even after a small amount of alloying. For instance, the in-plane and out-of-plane thermal conductivities of In0.99Ga0.01 N are 66 Wm−1K−1 and 76 Wm−1K−1 respectively, while they are 40 Wm−1K−1 and 48 Wm−1 K−1 for In0.99Al0.01 N, compared with the corresponding values of 130 Wm−1 K−1 and 145 Wm−1 K−1 for bulk wurtzite InN. When the fraction x varies from 0.2 to 0.8, the thermal conductivities of the alloys do not change much. Additionally, the distribution of mean free path indicates that the size effect can persist up to 10μm for both pure compounds and their alloys at room temperature.


Sign in / Sign up

Export Citation Format

Share Document