Se‐directed synthesis of polymeric carbon nitride with potential applications in heavy metal‐containing industrial sewage treatment

2019 ◽  
Vol 34 (2) ◽  
Author(s):  
Jian Zhang ◽  
Kuanhong Cao ◽  
Xu Zhang ◽  
Qitao Zhang
2019 ◽  
Vol 10 ◽  
pp. 1316-1323 ◽  
Author(s):  
Kai Xiao ◽  
Baris Kumru ◽  
Lu Chen ◽  
Lei Jiang ◽  
Bernhard V K J Schmidt ◽  
...  

A controllable ion transport including ion selectivity and ion rectification across nanochannels or porous membranes is of great importance because of potential applications ranging from biosensing to energy conversion. Here, a nanofluidic ion diode was realized by modifying carbon nitride nanotubes with different molecules yielding an asymmetric surface charge that allows for ion rectification. With the advantages of low-cost, thermal and mechanical robustness, and simple fabrication process, carbon nitride nanotubes with ion rectification have the potential to be used in salinity-gradient energy conversion and ion sensor systems.


2018 ◽  
Vol 769 ◽  
pp. 187-192
Author(s):  
Korlan Khamitova ◽  
Daniar V. Ismailov ◽  
Marzhan Sultangazina ◽  
Rakhima Kanat

Contaminated water purification from products of anthropogenesis activity remains one of the main problems that chemists and ecologists are facing nowadays. The main mass of pollutants in the form of toxic compounds of heavy metals is made by insufficiently purified and untreated sewage from the mining and machine-building industries. Industrial sewage treatment has become one of the most common technological processes, thus the issues of its improvement and optimization are especially relevant.


2018 ◽  
Author(s):  
Chaofeng Huang ◽  
Jing Wen ◽  
Yanfei Shen ◽  
Fei He ◽  
Li Mi ◽  
...  

<a></a><a>As a metal-free conjugated polymer, carbon nitride (CN) has attracted tremendous attention as heterogeneous (photo)catalysts. </a><a></a><a>By following prototype of enzymes, making all catalytic sites of accessible via homogeneous reactions is a promising approach toward maximizing CN activity, but hindered due to </a><a></a><a>the poor insolubility of CN</a>. Herein, we report the dissolution of CN in environment-friendly methane sulfonic acid and the homogeneous photocatalysis driven by CN for the first time with the activity boosted up to 10-times, comparing to the heterogeneous counterparts. Moreover, facile recycling and reusability, the <a>hallmark</a> of heterogeneous catalysts, were kept for the homogeneous CN photocatalyst via reversible precipitation using poor solvents. It opens new vista of CN in homogeneous catalysis and offers a successful example of polymeric catalysts in bridging gaps of homo/heterogeneous catalysis.


2019 ◽  
Author(s):  
Zhengyuan Jin ◽  
Xiantao Jiang ◽  
Qitao Zhang ◽  
Shaolong Huang ◽  
Luhong Zhang ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Athar Hussain ◽  
Manjeeta Priyadarshi ◽  
Saif Said ◽  
Suraj Negi

Most of the industrial sewage effluents used for irrigation contains heavy metals which cause toxicity to crop plants as the soils are able to accumulate heavy metal for many years. The vegetables grown for the present study were irrigated with treated wastewater brought from a nearby full-scale sewage treatment plant at different compositions along with tap water as a control. The concentration levels of the Cd, Co, Cu, Mn and Zn in the soil were found to below the toxic limits as prescribed in literature. Daily Intake Metals (DIM) values suggest that the consumption of plants grown in treated wastewater and tap water is nearly free of risks, as the dietary intake limits of Cu, Fe, Zn and Mn. The Enrichment Factor for the treated wastewater irrigated soil was found in order Zn> Ni> Pb> Cr> Cu> Co> Mn> Cd. Thus, treated wastewater can be effectively used for irrigation. This will have twofold significant environmental advantages: (1) helpful to reduce the groundwater usage for irrigation and (2) helpful to reduce the stress on surface water resources.


1993 ◽  
Vol 27 (1) ◽  
pp. 87-96 ◽  
Author(s):  
G. Schrale ◽  
R. Boardman ◽  
M. J. Blaskett

The Bolivar Sewage Treatment Works (STW) processes the urban and industrial sewage from the northern and eastern suburbs of Adelaide. The treatment capacity is equivalent to the sewage production of 1.1 million people. The disposal of more than 40 000 ML of reclaimed water into the sea has caused a progressive degradation of about 950 ha of seagrass beds which threatens the sustainability of the fisheries and marine ecosystems of Gulf St. Vincent. The current practice will no longer be viable to achieve compliance with the SA Marine Environment Protection Act, 1990. A Inter-Departmental Working Party recommmended that the Bolivar reclaimed water be disposed by irrigation of suitable land on the coastal plains north of Adelaide. They proposed the construction of two pipelines: a 12 km long pipeline to extend the distribution of reclaimed water in the most intense portion of the 3 500 hectares of irrigated horticulture on the Northern Adelaide Plains, and a second, 18 km long pipeline to deliver the remainder to a more northerly site for irrigation of an estimated 4 000 hectares of hardwood plantations. The paper summarizes the findings as they relate to public health, environmental, technical and financial aspects of land based disposal. Land based disposal would completely eliminate the marine degradation and also arrest the over-use of the NAP underground water resources for horticulture. The total net costs over thirty years for land based disposal are about $ 21.8 million. The ‘horticultural' pipeline of the land based disposal scheme is expected to be commercially viable. A shortfall in revenue from the afforestation component is expected and may need to be considered as an environmental cost of ceasing marine disposal.


ChemSusChem ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3605-3613 ◽  
Author(s):  
Qin Lei ◽  
Rongzhi Chen ◽  
Yurong Zhao ◽  
Huanyu Chen ◽  
Xinxin Long ◽  
...  

Author(s):  
Mei Zheng ◽  
Hongbin Xu ◽  
Yi Li ◽  
Kaining Ding ◽  
Yongfan Zhang ◽  
...  

Author(s):  
Lirong He ◽  
Xiao Tang ◽  
Yanhong Li ◽  
Ling Zhang ◽  
Guozhong Cao

Sign in / Sign up

Export Citation Format

Share Document