Structure–property behavior of UV-curable polyepoxy–acrylate hybrid materials prepared via sol–gel process

2003 ◽  
Vol 87 (10) ◽  
pp. 1654-1659 ◽  
Author(s):  
Ling Zhang ◽  
Zhaohua Zeng ◽  
Jianwen Yang ◽  
Yonglie Chen
2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2004 ◽  
Vol 53 (10) ◽  
pp. 1431-1435 ◽  
Author(s):  
Ling Zhang ◽  
Zhaohua Zeng ◽  
Jianwen Yang ◽  
Yonglie Chen

2015 ◽  
Vol 39 (12) ◽  
pp. 9789-9799 ◽  
Author(s):  
Sizhe Wang ◽  
Guangli Li ◽  
John J. Chiao ◽  
Z. Jeffrey Wang ◽  
Yanwen Yvonne Duan

UV-curable molecular hybrids were prepared by a sol–gel process that could be adopted industrially. The stability was improved and additional functional groups introduced.


1994 ◽  
Vol 6 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Yoshitake Iyoku ◽  
Masa-aki Kakimoto ◽  
Yoshio Imai

Poly(methylsilsesquixoane) network (silicone)-polyimide hybrid materials were successfully prepared by the sol-gel reaction of methyltriethoxysilane (MTES). The ethoxysilyl group in MTES was hydrolyzed and polycondensed in the solution of the polyamic acid, derived from pyromellitic dianhydride and bis(4-aminophenyl)ether, in N,N-dimethyl-acetamide (DMAc). The hybrid films were obtained by casting the reaction mixture, followed by heating up to 300°C. The hybrid materials containing 0-60wt% of silicone afforded flexible films. The films containing less than 7 wt% silicone were yellow and transparent, whereas the films with higher silicone content were yellow and opaque. Silicone particles with a diameter of around 1-10 μm were observed in the fracture surface of the hybrid films by scanning electron microscopy. Although the tensile strength and tensile modulus of the films obtained decreased with increasing silicone content. the value of the elongation at break remained at 60% up to 30% silicone content.


2018 ◽  
Vol 47 (9) ◽  
pp. 2925-2932 ◽  
Author(s):  
J. Brendlé

The sol–gel process involving hydrolysis and condensation reactions is an attractive way to form siloxane based hybrid materials since it is a one-step method performed under mild conditions.


2019 ◽  
Vol 38 (9) ◽  
pp. 586-597 ◽  
Author(s):  
Ananda S. Amarasekara ◽  
Deping Wang

Two chitosan silica hybrid materials were prepared by a two-step process in 78–84% yields using the homogeneous phase reaction of 3-(triethoxysilyl)propyl isocyanate with chitosan dissolved in 1-n-butyl-3-methylimidazolium chloride ionic liquid (∼10% w/w), which was followed by NH4OH catalyzed hydrolysis of triethoxysilyl groups and then sol-gel process. These new hybrid materials were shown to adsorb up to about 95% of Fe3+ from 5 × 10−4 M aqueous solution at room temperature in 24 h.


2006 ◽  
Vol 18 (18) ◽  
pp. 4344-4353 ◽  
Author(s):  
Arántzazu González-Campo ◽  
Bruno Boury ◽  
Francesc Teixidor ◽  
Rosario Núñez

Sign in / Sign up

Export Citation Format

Share Document