The preparation of poly(methylsilsesquioxane) network-polyimide hybrid materials by the sol-gel process and their properties

1994 ◽  
Vol 6 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Yoshitake Iyoku ◽  
Masa-aki Kakimoto ◽  
Yoshio Imai

Poly(methylsilsesquixoane) network (silicone)-polyimide hybrid materials were successfully prepared by the sol-gel reaction of methyltriethoxysilane (MTES). The ethoxysilyl group in MTES was hydrolyzed and polycondensed in the solution of the polyamic acid, derived from pyromellitic dianhydride and bis(4-aminophenyl)ether, in N,N-dimethyl-acetamide (DMAc). The hybrid films were obtained by casting the reaction mixture, followed by heating up to 300°C. The hybrid materials containing 0-60wt% of silicone afforded flexible films. The films containing less than 7 wt% silicone were yellow and transparent, whereas the films with higher silicone content were yellow and opaque. Silicone particles with a diameter of around 1-10 μm were observed in the fracture surface of the hybrid films by scanning electron microscopy. Although the tensile strength and tensile modulus of the films obtained decreased with increasing silicone content. the value of the elongation at break remained at 60% up to 30% silicone content.

1994 ◽  
Vol 6 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Yoshitake Iyoku ◽  
Masa-aki Kakimoto ◽  
Yoshio Imai

The preparation of poly(phenylsilsesquioxane)-polyimide hybrid films was successfully performed with phenyltriethoxysilane (PhTES) and the polyamic acid (polyimide precursor) prepared from 4.4'-oxydianiline (ODA) and pyromellitic dianhydride (PMDA). During the heating process at 300 C, the imidization of the polyamic acid and the sol-gel reaction, hydrolysis and condensation of PhTES, proceeded simultaneously. The IR spectrum and the t3C-NMR and 29Si-NmR spectra showed that the sol-gel reaction of PhTES proceeded in the polymer matrix with high conversion. The hybrid films with a silsesquioxane content up to 75 wt% were obtained as the self-standing form. The hybrid films having a silsesquioxane content of 45 wt% were yellow and transparent, and those having more silicone content were yellow and translucent. The therma] properties of the hybrid films were improved to some extent by the introduction of the silsesquioxane component into the polyimide matrix. With respect to the tensile properties. the tensile strength remained around 85 MPa up to a silicone content of 45 wt%. This value was twice that of the hybrid films based on methyltriethoxysilane. The tensile modulus decreased with increasing silsesquioxane content.


1991 ◽  
Vol 227 ◽  
Author(s):  
Masa-aki Kakimoto ◽  
Atsushi Morikawa ◽  
Yoshitake Iyoku ◽  
Yoshio Imai

ABSTRACTPolyimide-silica hybrid films were successfully prepared by the sol-gel reaction starting from a mixture of tetraethoxysilane (TEOS), a solution ofpolyamic acid in N, N-dimethylacetamide and water of pH 7 and pH 3. The hybrid films were obtained by the hydrolysis-polycondensation of TEOS in the polyamic acid solution, followed by heating at 270°C. Fairly flexible films were obtained for silica contents up to 70 wt%. The films containing less than 8 wt% of silica were yellow and transparent, whereas the films with higher silica contents were yellow and opaque. The density of the silica in the hybrid films was estimated to be 1.65 and 1.69 g/cm3 (pH 7 and pH 3). The29Si nuclear magnetic resonance spectrum indicated that the silica in the films consisted of non-hydroxy, monohydroxy, and dihydroxy siloxane structures. Silica particles with submicron diameter were observed in the hybrid films containing less than 8 wt% silica, whereas larger particle size around 5 μ m in the case of higher silica content. The decomposition temperature of the hybrid films increased with increasing silica content. The glass transition temperature of the hybrid films showed the minimum at 8 wt% of silica content. Tensile properties, such as elongation at break, tensile strength, and tensile modulus also exhibited the same tendency. The linear thermal expansion coefficient of the silica in the hybrid films was estimated to be 1.3 × 10−5 and 0.3 × 10−5 (pH 7 and pH 3), which suggested that the silica had a porous structure.


2008 ◽  
Vol 47-50 ◽  
pp. 973-976 ◽  
Author(s):  
Yi He Zhang ◽  
Qing Song Su ◽  
Li Yu ◽  
Hong Zheng ◽  
Hai Tao Huang ◽  
...  

A sol-gel process was used to prepare polyimide-silica hybrid films from the polyimide precursors and TEOS in N,N- dimethyl acetamide, then the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 80nm to 1µm, depending on the size of silica particles. The structure and dielectric constant of the hybrid and porous films were characterized by FTIR,SEM. The porous films displayed relatively low dielectric constant compared to the hybrid polyimide-silica films.


2009 ◽  
Vol 2 (1) ◽  
pp. 99-107 ◽  
Author(s):  
S. M. M. Alam

Polyimide (PI)-inorganic like silica hybrid films were successfully prepared to combine the good performances of silica like tensile modulus, thermal stability etc. into organic PI. Polyamic acid (PAA), precursor of PI, was prepared from 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride (BPDA), p-phenylediamine (PDA) and in-situ formed silica was formed into PAA from tetraethoxysilane (TEOS) through in-situ sol-gel process. The films were transparent and became translucent in presence of up to 10% inorganic contents. The chemical structures were characterized by Fourier transform infrared spectroscopy (FTIR). The morphology of the films was investigated by scanning electronic microscopy (SEM). Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), stress-strain tests and dynamic mechanical analysis (DMA) were used to evaluate the performances of the films. The results indicated that the glass-transition temperatures (Tg) and decomposition temperatures of the PI-silica hybrid films were higher than those of pristine PI. Tensile modulus, tensile strength of PI increased prominently in presence of small amount (1%) of silica in PI-silica hybrid. Keywords: Polyimide; Hybrid; Sol-gel process. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i1.2733                 J. Sci. Res. 2 (1), 99-107 (2010)  


2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


1998 ◽  
Vol 519 ◽  
Author(s):  
Y. Yan ◽  
Z. Duan ◽  
D.-G. Chen ◽  
S. Ray Chaudhuri

AbstractThe insoluble, strongly hydrogen bonded organic pigment of 3,6-bis-(4-chlorphenyl)-l,4- diketopyrrolo [3,4-c] pyrrole was transiently blocked by adding carbamate groups, and consequently incorporated into organic-inorganic hybrid matrices by a sol-gel process. The homo- (pigment-pigment) and hetero-intermolecular (pigment-matrix) interactions were found to control both the assembly and dispersion of pigment molecules in the hybrid coating films. A weaker interaction between matrices and pigment molecules results in aggregation of the carbamate pigment in the methyl-silicate films. A stronger interaction forms a homogenous dispersion and coloration of the phenyl-silicate films. The as-prepared methyl- and phenylsilicate films doped with the organic pigment were distinguished by a morphology change and a blue (hypsochromic) shift in absorption from 550 to 460 nm. Thermal treatment can remove the carbamate groups and in-situ form the organic pigment in the hybrid films.


1992 ◽  
Vol 5 (2) ◽  
pp. 393-396 ◽  
Author(s):  
Atsushi Morikawa ◽  
Hidehiro Yamaguchi ◽  
Yoshitake Iyoku ◽  
Masa-aki Kakimoto ◽  
Yoshio Imai

2013 ◽  
Vol 131 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Amélie Houel ◽  
Jocelyne Galy ◽  
Aurélia Charlot ◽  
Jean-François Gérard

2018 ◽  
Vol 47 (9) ◽  
pp. 2925-2932 ◽  
Author(s):  
J. Brendlé

The sol–gel process involving hydrolysis and condensation reactions is an attractive way to form siloxane based hybrid materials since it is a one-step method performed under mild conditions.


Sign in / Sign up

Export Citation Format

Share Document