Determination of number-average and weight-average molecular weights of polymer sample from diffusion and sedimentation velocity measurements in theta solvent

1983 ◽  
Vol 28 (7) ◽  
pp. 2325-2339 ◽  
Author(s):  
Masaru Okabe ◽  
Hideomi Matsuda

In a previous paper, the investigation of the scattering of light in agar sols and gels was described and a view regarding the changes taking place in the system during gelation was developed. In a series of paper, of which this is the first, the author proposes to publish investigations of the scattering of light in protein solutions. The various physical properties of the different proteins have been studied for a long time past. Several workers have tried to evaluate the molecular weights of the proteins from the osmotic pressure of their solutions and also from analytical data. Recently a very precise and definite method for the determination of the molecular weights of the proteins, based upon the sedimentation of these heavy molecules in the ultra-centrifuge, has been successfully developed by Svedberg. The molecular weight can be determined in two ways:—(I) by the measurement of the sedimentation equilibrium reached in the cell as a result of the centrifugal and diffusion forces; (II) by measuring the sedimentation velocity of the protein molecules in high centrifugal fields.


Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


1988 ◽  
Vol 53 (8) ◽  
pp. 1735-1744 ◽  
Author(s):  
Jitka Horská ◽  
Jaroslav Stejskal ◽  
Pavel Kratochvíl ◽  
Aubrey D. Jenkins ◽  
Eugenia Tsartolia ◽  
...  

An attempt was made to prepare well-defined graft copolymers by the coupling reaction between acyl chloride groups located along the backbone chain and monohydroxy-terminated grafts prepared separately. The molecular weights and the parameters of heterogeneity in chemical composition of the products were determined by light scattering and osmometry. The determination of molecular characteristics revealed that the degree of grafting was low. The results therefore could not be confronted with a statistical model at this stage. The problems encountered in the synthesis, e.g., gel formation, and the data relating to the soluble products are discussed.


1969 ◽  
Vol 30 (2) ◽  
pp. 212-216 ◽  
Author(s):  
K. de Groot ◽  
J.C.M. Reijnen ◽  
H.J. Hoenders
Keyword(s):  

Nature ◽  
1959 ◽  
Vol 183 (4666) ◽  
pp. 991-992 ◽  
Author(s):  
F. W. PARRISH ◽  
W. J. WHELAN
Keyword(s):  

2018 ◽  
Vol 618 ◽  
pp. A116 ◽  
Author(s):  
J. Prieto-Arranz ◽  
E. Palle ◽  
D. Gandolfi ◽  
O. Barragán ◽  
E. W. Guenther ◽  
...  

Context. Multiplanet systems are excellent laboratories to test planet formation models as all planets are formed under the same initial conditions. In this context, systems transiting bright stars can play a key role, since planetary masses, radii, and bulk densities can be measured. Aims. GJ 9827 (K2-135) has recently been found to host a tightly packed system consisting of three transiting small planets whose orbital periods of 1.2, 3.6, and 6.2 days are near the 1:3:5 ratio. GJ 9827 hosts the nearest planetary system (~30 pc) detected by NASA’s Kepler or K2 space mission. Its brightness (V = 10.35 mag) makes the star an ideal target for detailed studies of the properties of its planets. Methods. Combining the K2 photometry with high-precision radial-velocity measurements gathered with the FIES, HARPS, and HARPS-N spectrographs we revised the system parameters and derive the masses of the three planets. Results. We find that GJ 9827 b has a mass of Mb = 3.69−0.46+0.48 M⊕ and a radius of Rb = 1.58−0.13+0.14 R⊕, yielding a mean density of ρb = 5.11−1.27+1.74 g cm−3. GJ 9827 c has a mass of Mc = 1.45−0.57+0.58 M⊕, radius of Rc = 1.24−0.11+0.11 R⊕, and a mean density of ρc = 4.13−1.77+2.31 g cm−3. For GJ 9827 d, we derive Md = 1.45−0.57+0.58 M⊕, Rd = 1.24−0.11+0.11 R⊕, and ρd = 1.51−0.53+0.71 g cm−3. Conclusions. GJ 9827 is one of the few known transiting planetary systems for which the masses of all planets have been determined with a precision better than 30%. This system is particularly interesting because all three planets are close to the limit between super-Earths and sub-Neptunes. The planetary bulk compositions are compatible with a scenario where all three planets formed with similar core and atmosphere compositions, and we speculate that while GJ 9827 b and GJ 9827 c lost their atmospheric envelopes, GJ 9827 d maintained its primordial atmosphere, owing to the much lower stellarirradiation. This makes GJ 9827 one of the very few systems where the dynamical evolution and the atmosphericescape can be studied in detail for all planets, helping us to understand how compact systems form and evolve.


2018 ◽  
Vol 13 (6) ◽  
pp. 50
Author(s):  
Gleb V. Grenkin ◽  
Alexander Yu. Chebotarev ◽  
Valeri I. Babushok ◽  
Sergey S. Minaev

The optimization procedure was developed to derive the global kinetic parameters using experimental dependence of burning velocity on the equivalence ratio. The simple model of laminar premixed flame propagation with assumed constant parameters was used to demonstrate the features of the suggested procedure. The suggested method allows finding optimal parameters for the defined functional dependence of the reaction rate on the temperature and reactant concentrations. The dependence of combustion adiabatic temperature on equivalence ratio is assumed to be known from the flame equilibrium calculations. The global kinetic parameters of combustion reaction were determined for methane, ethylene and propane mixtures with air on the basis of experimental data on burning velocity as function of the equivalence ratio. The calculated overall kinetic parameters are compared with parameters obtained by other methods within similar global model.


Sign in / Sign up

Export Citation Format

Share Document