The application of infrared microimaging for the determination of the distribution, penetration depth, and diffusion profile of methyl centralite and dibutyl phthalate deterrents in nitrocellulose monoperforated propellant

1993 ◽  
Vol 49 (2) ◽  
pp. 275-289 ◽  
Author(s):  
J. D. Louden ◽  
I. A. Duncan ◽  
J. Kelly ◽  
R. M. Speirs
1985 ◽  
Vol 5-6 ◽  
pp. 323-328 ◽  
Author(s):  
D. Trégoat ◽  
Giles Fonteneau ◽  
J. Lucas

The rate of evaporation of drops of dibutyl phthalate and butyl stearate of radius approx. 0.5 mm. has been studied by means of a microbalance over a range of atmospheric pressures down to approx. 0*1 mm. of mercury. Wide departures from Langmuir’s evaporation formula were found to occur at these low pressures, but results are in good accordance with the theory of droplet evaporation advanced by Fuchs which hitherto has not been tested experimentally. This experimental verification of Fuch’s theory for droplets of medium size evaporating at low pressures shows that the theory can be applied to the evaporation of very small drops at atmospheric pressure. The vapour pressures of the above liquids have been measured by Knudsen’s method and the evaporation and diffusion coefficients calculated fro n the experimental data.


1986 ◽  
Vol 71 ◽  
Author(s):  
I. Suni ◽  
M. Finetti ◽  
K. Grahn

AbstractA computer model based on the finite element method has been applied to evaluate the effect of the parasitic area between contact and diffusion edges on end resistance measurements in four terminal Kelvin resistor structures. The model is then applied to Al/Ti/n+ Si contacts and a value of contact resistivity of Qc = 1.8×10−7.Ωcm2 is derived. For comparison, the use of a self-aligned structure to avoid parasitic effects is presented and the first experimental results obtained on Al/Ti/n+Si and Al/CoSi2/n+Si contacts are shown and discussed.


1960 ◽  
Vol 82 (3) ◽  
pp. 609-621 ◽  
Author(s):  
S. L. Soo ◽  
H. K. Ihrig ◽  
A. F. El Kouh

Experimental methods for the determination of certain statistical properties of turbulent conveyance and diffusion of solid particles in a gaseous state are presented. Methods include a tracer-diffusion technique for the determination of gas-phase turbulent motion and a photo-optical technique for the determination of motion of solid particles. Results are discussed and compared with previous analytical results.


Author(s):  
Pham Trong Lam ◽  
Ta Thi Luong ◽  
Vo Van On ◽  
An Dinh Van

In this work, we investigated the adsorption mechanism of acetone and toluene on the surface of silicene by the quantum simulation method. The images of the potential energy surfaces for different positions of the adsorbate on the silicene surface were explored by Computational DFT-based Nanoscope tool for determination of the most stable configurations and diffusion possibilities. The charge transfer in order of 0.2 – 0.3 electrons and the tunneling gap opening of 18 – 23 meV due to acetone and toluene, respectively, suggest that silicene is considerably sensitive with these VOCs and can be used as the material in the fabrication of reusable VOC sensors.


Sign in / Sign up

Export Citation Format

Share Document