Quantitative characterization of dispersed particle size, size distribution, and matrix ligament thickness in polypropylene blended with metallocene ethylene-octene copolymers

2001 ◽  
Vol 82 (9) ◽  
pp. 2140-2149 ◽  
Author(s):  
K. Premphet ◽  
W. Paecharoenchai
Drug Research ◽  
2017 ◽  
Vol 67 (05) ◽  
pp. 266-270 ◽  
Author(s):  
Ebrahim Izadi ◽  
Ali Rasooli ◽  
Abolfazl Akbarzadeh ◽  
Soodabeh Davaran

AbstractThrough the present study, an eco-friendly method was used to synthesize the gold nanoparticles (GNPs) by using the sodium citrate and extract of the soybean seed as reducing the agents at PH 3. X-Ray diffraction (XRD) method was used to evaluate the crystal structure of as-synthesized NPs and it’s revealed that this method leads to well crystallized GNPs. In order to determine the particle size and their distribution, field emission scanning microscopy (FE-SEM) and dynamic light scattering (DLS) were used. The results showed that, the average particle size distribution of synthesized GNPs in solutions containing of the soybean extract and 1% citrate at PH 3 is about 109.6 and 140.9 nm, respectively. Also, we find that the average size of GNPs is 40 and 33 nm from solutions of citrate and soybean extract, respectively. It was concluded that using the extract of soybean seeds as reducing agent can lead to GNPs with small size and narrow size distribution.


MRS Advances ◽  
2016 ◽  
Vol 1 (32) ◽  
pp. 2303-2308 ◽  
Author(s):  
Alberto Delgado ◽  
Jorge A. Catalan ◽  
Hisato Yamaguchi ◽  
Claudia Narvaez Villarrubia ◽  
Aditya D. Mohite ◽  
...  

ABSTRACTIn this work, we have explored the prospects of MoS2 and WS2, both of which are semiconducting 2D materials, for potential composite applications. In order to form 2D materials composites we have to first disperse them chemically in solution. MoS2 and WS2 powders were oversaturated in N-Methyl-2-pyrrolidone (NMP) solution at 37.5 mg/mL and sonicated at room temperature (RT) for sonication times ranging from 30 minutes to close to 24 hours. After solution processing, the samples with the 2D flakes were transferred to an Isopropyl Alcohol (IPA) bath for particle size distribution analysis. We have observed significant changes in particle size distribution spanning two orders of magnitude as a function of the sonication conditions. Specifically, the observed changes in particle size distribution for MoS2 and WS2 powders ranged from 44 microns down to 0.409 microns, and 148 microns down to 0.409, respectively, as compared to the untreated materials. Structural analysis was conducted using the SEM and X-Ray diffraction. The structural analysis using the SEM revealed morphological signatures between the two materials, where the MoS2 flakes had a randomly oriented distribution with occasional triangular flakes. In the case of the WS2, regardless of the sonication conditions, the WS2 flakes seemed to have a characteristic 120° angular distribution at the vertices, representing a rhombus with concave edges. The XRD analysis showed a minute shift in the characteristic peaks that maybe due to strain-induced effects as a result of the solution processing. Optical characterization of the materials was also conducted using Raman Spectroscopy to validate the average layer number resulting from the solution dispersions and the spatial and compositional uniformity of the two material samples.


2020 ◽  
Vol 328 ◽  
pp. 01006
Author(s):  
Ondrej Misik ◽  
Milan Maly ◽  
Ondrej Cejpek ◽  
Frantisek Lizal

Nebulizers are commonly used devices for inhalation treatment of various disorders. There are three main categories of medical nebulization technology: jet nebulizers, ultrasound nebulizer, and mesh nebulizer. The mesh nebulizers seem to be very promising since this technology should be able to produce aerosol with precisely determined particle size and is easy to use as well [1]. Aerosol generated from the mesh nebulizer Aerogen Solo was measured in this work. Particle size distribution with a mass median of aerodynamic diameter (MMAD) was determined by two different methods.


Sign in / Sign up

Export Citation Format

Share Document