Improving easy care nonformaldehyde finishing performance using polycarboxylic acids via precationization of cotton fabric

2006 ◽  
Vol 100 (4) ◽  
pp. 2697-2704 ◽  
Author(s):  
A. Hebeish ◽  
M. Hashem ◽  
A. Abdel-Rahman ◽  
Z. H. El-Hilw
2019 ◽  
Vol 8 (3) ◽  
pp. 93-100 ◽  
Author(s):  
Sudirman Habibie

Chitin dan chitosan adalah bahan “chelate” yang sangat kuat untuk ion transisi logam terutama tembaga, nikel dan merkuri, dan sifat-sifat ini yang akan intensif di bahas. Pada studi ini kain kapas (cotton) dikerjakan dengan larutan chitosan-asam polikarboksilat untuk memperoleh kain kapas-chitosan yang mengandung gugus group karboksilat (-COOH) dan gugus amina (-NH2) fungsional. Penggunaan asam polykarboksilat (asam sitrat dan maleik) pada pelarutan chitosan menghasilkan group karboksil 0,5 meqs/g pada kain yang dicelup dengan larutan chitosan asam karboksilat. Kemudian kain kapas yang telah mengandung gugus karboksilat dan gugus amina ini dicelupkan pada larutan garam logam (garam tembaga dan seng). Terbukti bahwa larutan garam tembaga (copper) memberikan warna biru pada kain, hal ini mengindikasikan telah terjadi reaksi kompleks atau “Chelate”. Implikasi dari hasil ini maka diperkirakan kandungan group karboksil dan amina ini akan mempengaruhi pada pencelupan kain, namun hal ini tidak diuji.Kata kunci : Chitosan, Kain Kapas, Chelate, Asam asetat, Asam citrate, Asam maleik, Tembaga sulphate, Tembaga acetate.AbstractChitin and chitosan are powerfull chelating agents for transition metal ions, particularly copper, nickel and mercury, and these properties have been extensively reviewed. In this study, cotton fabric has been treated with chitosan- polycarboxylic acid solution to form chitosan treated cotton fabric containing carboxyl (-COOH) and amine (-NH2) functional groups. The use of polycarboxylic acids (citric and maleic acids) to dissolve chitosan has given carboxyl groups 0.5 meqs/g into chitosan treated cotton fabrics. Instead, the complexing of the treated cotton samples with copper and zinc salts was examined. The copper salt solutions gave blue fabrics confirming easily that complexing or chelation had occurred. There are implications for dyeing cotton making use of these groups but this was not investigated.Keyword : Chitosan, Cotton fabric, Chelation, Acetic acid, Citric acid, Maleic acid, Copper (II) sulphate, Copper (II) acetate.


1997 ◽  
Vol 67 (5) ◽  
pp. 334-342 ◽  
Author(s):  
Charles Q. Yang ◽  
Xilie Wang ◽  
In-Sook Kang

Polycarboxylic acids appear to be the most promising nonformaldehyde durable press finishing agents to replace the traditional N-methylol reagents, 1,2,3,4-Butanetetracarboxylic acid (btca) is the most effective crosslinking agent among the acids investigated, but its exceedingly high cost has prevented its use in the textile industry on a commercial scale. In this research, we evaluate the effectiveness of two polymers of maleic acid, i.e., the homopolymer (pma) and the terpolymer (tpma), along with citric acid (ca) for crosslinking cotton cellulose., pma, tpma, and ca have molecular structures similar to btca, but are more cost effective. We have found that pma and tpma are less effective crosslinking agents for cotton than btca, probably due to the low mobility of the anhydride intermediate formed by pma or tpma to access the cellulosic hydroxyl during the curing process. We have found that the hydroxyl of ca and other α-hydroxylpolycarboxylic acids hinder the esterification of those acids with cellulose. The infrared spectroscopy data indicate that ca esterifies the anhydride intermediates of pma and tpma on cotton fabric under curing conditions. Consequently, ca is transformed from a trifunctional acid to a tetrafunctional one with the formation of an ester linkage with pma or tpma.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3289
Author(s):  
Xiaoyu Cai ◽  
Hong Li ◽  
Li Zhang ◽  
Jun Yan

Cotton fabrics were dyed with the madder and compounds of citric acid (CA) and dicarboxylic acids [tartaric acid (TTA), malic acid (MLA), succinic acid (SUA)] as cross-linking agents and sodium hypophosphite (SHP) as the catalyst. The molecular structures and crystal structures of the dyed cotton fabrics were analyzed using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD), respectively. The results showed that the polycarboxylic acids esterified with the hydroxyl groups in the dye and cellulose, respectively, and the reaction mainly occurred in the amorphous region of the cotton fabric. Compared with the direct dyed cotton fabric, the surface color depth (K/S) values of the CA, CA+TTA, CA+MLA, CA+SUA cross-linked dyed cotton fabrics increased by approximately 160%, 190%, 240%, 270%, respectively. The CA+SUA cross-linked dyed cotton fabric achieved the biggest K/S value due to the elimination of the negative effect by α-hydroxyl in TTA and MLA on esterification reaction, and the cross-linked dyed cotton fabrics had great levelness property. The washing and rubbing fastness of the cross-linked cotton fabrics were above four levels. The light resistance stability and the antibacterial property of the cross-linked dyed cotton fabrics was obviously improved. The sum of warp and weft wrinkle recovery angle (WRA) of the CA+SUA cross-linked dyed cotton fabric was 55° higher than that of raw cotton fabric, and its average UV transmittance for UVA was less than 5% and its UPF value was 50+, showing a great anti-wrinkle and anti-ultraviolet properties.


1960 ◽  
Vol 04 (03) ◽  
pp. 462-472 ◽  
Author(s):  
Tage Astrup ◽  
Ida Sterndorff

Summary1. The presence of citrate in the normal fibrin enhanced the fibrinolytic activity of plasminogen activators, including trypsin. The effect of proteases (on normal or on heated fibrin, containing citrate) was not significantly influenced.2. The effect of plasminogen activators was also increased when excess of plasminogen was present in the normal fibrin plates.3. Fumaric acid and maleic acid belong to the polycarboxylic acids producing an enhancing effect.


2018 ◽  
Vol 2018 (1) ◽  
pp. 65-68
Author(s):  
Zhen Shi ◽  
Rui Dan ◽  
Longyun Hao ◽  
Weichao Chen ◽  
Ruyi Xie ◽  
...  

2017 ◽  
Vol 61 (5) ◽  
pp. 505051-505057 ◽  
Author(s):  
Zundong Liu ◽  
Kuanjun Fang ◽  
Hongguo Gao ◽  
Xiuming Liu ◽  
Jianfei Zhang ◽  
...  

2018 ◽  
Vol 27 (1) ◽  
pp. 127-134
Author(s):  
Sushma Rani ◽  
Parveen Punia

Sign in / Sign up

Export Citation Format

Share Document