Mechanical properties of silica particle-filled styrene-butadiene rubber composites containing polysulfide-type silane coupling agents: Influence of loading method of silane

2013 ◽  
Vol 130 (1) ◽  
pp. 322-329 ◽  
Author(s):  
Tomoyoshi Fukuda ◽  
Syuji Fujii ◽  
Yoshinobu Nakamura ◽  
Mariko Sasaki
Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3058
Author(s):  
Sang Yoon Lee ◽  
Jung Soo Kim ◽  
Seung Ho Lim ◽  
Seong Hyun Jang ◽  
Dong Hyun Kim ◽  
...  

The methoxy-type silane coupling agents were synthesized via the modification of the hydrolyzable group and characterized to investigate the change in properties of silica/rubber composites based on the different silane coupling agent structures and the masterbatch fabrication methods. The prepared methoxy-type silane coupling agents exhibited higher reactivity towards hydrolysis compared to the conventional ethoxy-type one which led to the superior silanization to the silica filler surface modified for the reinforcement of styrene-butadiene rubber. The silica/rubber composites based on these methoxy-type silane coupling agents had the characteristics of more developed vulcanization and mechanical properties when fabricated as masterbatch products for tread materials of automobile tire surfaces. In particular, the dimethoxy-type silane coupling agent showed more enhanced rubber composite properties than the trimethoxy-type one, and the environmentally friendly wet masterbatch fabrication process was successfully optimized. The reactivity of the synthesized silane coupling agents toward hydrolysis was investigated by FITR spectroscopic analysis, and the mechanical properties of the prepared silica-reinforced rubber polymers were characterized using a moving die rheometer and a universal testing machine.


2018 ◽  
Vol 91 (2) ◽  
pp. 453-468 ◽  
Author(s):  
Hong-Yuan Ren ◽  
Zheng Sun ◽  
Li-Qun Zhang ◽  
You-Ping Wu ◽  
Qiang Huang ◽  
...  

ABSTRACT Two silane coupling agents, bis-(γ-triethoxysilylpropyl)-tetrasulfide (Si69) and vinyltriethoxysilane (A151), were selected to investigate their effects on structure and properties of silica-filled methyl vinyl silicone rubber (VMQ)/emulsion styrene butadiene rubber (ESBR) composites. The filler–rubber interactions were investigated via bound rubber content and solid-state 1H low-field nuclear magnetic resonance (NMR) spectroscopy, and the mass ratio of VMQ and ESBR in the rubber–filler gel was investigated by thermogravimetric analysis (TGA). The results revealed that VMQ showed a better compatibility with silica than ESBR. Compared with the A151 composite, the composite with Si69 showed the higher content of ESBR in rubber–filler gel, which resulted in the higher bound rubber content and the weaker Payne effect, and it also exhibited higher tensile strength, higher tear strength, better wear resistance, and lower hardness. However, the presence of Si69 reduced the crosslink efficiency of ESBR and completely inhibited the crosslinking of VMQ, which caused the composite to show higher tan δ value at 60 °C than the A151 composite.


2011 ◽  
Vol 284-286 ◽  
pp. 401-410
Author(s):  
Qiong Qiong Liu

Mullite (3A12O3·2SiO2) is an aluminosilicate ceramic of great technological importance. We investigated its potential as fillers in rubber. Mullites untreated or treated with 3% γ-mecapto-propyltrimethoxysilane (A-189) were added into styrene-butadiene rubber (SBR) materials on a laboratory-sized two-roll mill. For comparison, commercial precipitated silica was also used. The effect of these fillers on the cure characteristics, processibility and mechanical properties of SBR at various loadings, ranging from 0 to 50 phr was investigated. The results showed that mullite was a semi-reinforcing filler for SBR materials and exhibits better overall cure properties, lower Mooney viscosity, lower tensile set, better resilience as compared to precipitated silica, while it is inferior to precipitated silica especially with regard to tensile strength, tear strength and abrasion resistance. The presence of the silane coupling agent can enhance mechanical properties of filled SBR vulcanizates to some extent.


2000 ◽  
Vol 73 (3) ◽  
pp. 534-550 ◽  
Author(s):  
Shinzo Kohjiya ◽  
Yuko Ikeda

Abstract The use of the sol—gel process on general-purpose grade rubbers is reviewed in the absence or presence of silane coupling agents. The sol—gel reactions of tetraethoxysilane (TEOS) in epoxidized natural rubber (ENR), styrene—butadiene rubber (SBR) or butadiene rubber (BR) vulcanizates produced silica generated in situ. This silica was found to be a good reinforcing agent by investigating tensile and dynamic mechanical properties and morphology observation by transmission electron microscopy (TEM). The amount of silica formed was limited by the degree of swelling of the rubber vulcanizate by TEOS which was the precursor of the silica. However, the dispersion of silica generated in situ was better than conventionally added silica due to its formation in place. Also, it was noted that the diameter distribution of in situ silica was monodispersed. Silane coupling agents, such as mercaptosilane, aminosilane, and bis(3-triethoxysilylpropyl) tetrasulfide, were compounded in the vulcanizates and their effects on silica generated in situ were evaluated. Their effects were significant. The dispersion of the silica in the rubbery matrix became better and the particle size became smaller and monodispersed, as observed by TEM, which improved mechanical properties. The superior properties of silica generated in situ have been studied further to elucidate the mechanism of reinforcement.


2020 ◽  
Vol 10 (20) ◽  
pp. 7244
Author(s):  
Sung Ho Song

As eco-friendly “green tires” are being developed in the tire industry, conventionally used carbon black is being replaced with silica in rubber compounds. Generally, as a lubricant and dispersing agent, processing aids containing zinc ions have been employed as additives. However, as zinc is a heavy metal, alternative eco-friendly processing aids are required to satisfy worldwide environmental concerns. Furthermore, non-toxic, degradable, and renewable processing aids are required to improve the mechanical properties of the rubber composites. In this study, we evaluated the effects of diverse silica-based processing aids containing hydrocarbon, benzene, and hydroxyl functional groups on the mechanical properties of rubber composites. Among them, rubber composites that used amphiphilic terpene phenol resin (TPR) with hydrophilic silica showed compatibility with the hydrophobic rubber matrix and were revealed to improve the mechanical and fatigue properties. Furthermore, owing to the enhanced dispersion of silica in the rubber matrix, the TPR/styrene butadiene rubber composites exhibited enhanced wet grip and rolling resistance. These results indicated that TPR had multifunctional effects at low levels and has the potential for use as a processing aid in silica-based rubber composites in tire engineering applications.


Sign in / Sign up

Export Citation Format

Share Document