Comparison of the effects of phenyl dichlorophosphate modified and unmodified β-iron(III) oxide hydroxide on the thermal, combustion, and mechanical properties of ethylene-vinyl acetate/magnesium hydroxide composites

2013 ◽  
Vol 131 (8) ◽  
pp. n/a-n/a
Author(s):  
Lei Wang ◽  
Jing Zhan ◽  
Lei Song ◽  
Yuan Hu ◽  
Richard K. K. Yuen
Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2107
Author(s):  
Dongwei Yao ◽  
Guangzhong Yin ◽  
Qingqing Bi ◽  
Xu Yin ◽  
Na Wang ◽  
...  

In this study, we selected basalt fiber (BF) as a functional filler to improve the mechanical properties of ethylene vinyl acetate (EVA)-based flame retardant materials. Firstly, BF was modified by grafting γ-aminopropyl triethoxysilane (KH550). Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) were used to comprehensively prove the successful modification of the BF surface. Subsequently, the modified BF was introduced into the EVA/magnesium hydroxide (MH) composites by melt blending. The limiting oxygen index (LOI), UL-94, cone calorimeter test, tensile test, and non-notched impact test were utilized to characterize both the flame retardant properties and mechanical properties of the EVA/MH composites. It was found that the mechanical properties were significantly enhanced without reducing the flame retardant properties of the EVA/MH composites. Notably, the surface treatment with silane is a simple and low-cost method for BF surface modification and the pathway designed in this study can be both practical and effective for polymer performance enhancement.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1028 ◽  
Author(s):  
Zhi-Qi Liu ◽  
Zhi Li ◽  
Yun-Xian Yang ◽  
Yan-Ling Zhang ◽  
Xin Wen ◽  
...  

This study was aimed at investigating the effects of carbon nanomaterials with different geometries on improving the flame retardancy of magnesium hydroxide–filled ethylene-vinyl acetate (EM). The thermal stability and flame retardancy were studied by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 test, and cone calorimeter test (CCT). The in situ temperature monitoring system and interrupted combustion offered direct evidence to link flame retardancy and composite structure. Results demonstrated that carbon nanomaterials enhanced the thermal stability and fire safety of EM. The geometry of carbon nanomaterials played a key role in synergistic flame retardancy of EM, with the flame-retardant order of carbon nanotube > nanoscale carbon black > graphene. Based on an online temperature monitoring system and interrupted combustion test, one-dimensional carbon nanotube was more inclined to form the network structure synergistically with magnesium hydroxide in ethylene-vinyl acetate, which facilitated the generation of more continuous char structure during combustion. In parallel, the mechanical property was characterized by a tensile test and dynamic mechanical analysis (DMA). The incorporation of carbon nanomaterials presented a limited effect on the mechanical properties of the EM system.


2019 ◽  
Vol 19 (11) ◽  
pp. 7476-7486
Author(s):  
Jinze Du ◽  
Hongyan Zeng ◽  
Enguo Zhou ◽  
Bo Feng ◽  
Chaorong Chen ◽  
...  

The microcapsule nanoparticles were prepared by in-situ copolymerization of hydrotalcites (MAH) with the polymer (MF, PF, PS and PU) monomers, respectively, where the MF-wrapped MAH (MAH@MF) had the best monodispersity. The composites of the microcapsules and EVA were prepared by incorporating the microcapsule nanoparticles into ethylene vinyl acetate (EVA), respectively. To further understand the intrinsic correlation between microcapsule fillers and EVA matrix, molecular dynamics (MD) simulation was introduced to qualitatively analyze the contribution of microcapsule fillers on improving compatibility and mechanical properties of the EVA matrix. The compatibility of microcapsule nanoparticles with EVA matrix were detected in sequence through SEM, DSC and tensile strength tests. And the combustion, thermal behavior and flame retardance were also characterized by TG analyses as well as LOI and UL-94 level. As a result, the MAH@MF filler had the best performances in improving the flame retardancy and mechanical properties among the microcapsule fillers, attributed to high compatibility of the MAH@MF and EVA matrix, which made uniform distribution of the MAH@MF filler due to the reciprocity of triazine functional ring with vinyl acetate linkages.


Sign in / Sign up

Export Citation Format

Share Document