Preparation of a novel phosphorus–nitrogen flame retardant and its effects on the flame retardancy and physical properties of polyketone

2020 ◽  
Vol 137 (29) ◽  
pp. 49199 ◽  
Author(s):  
Min‐Ji Sim ◽  
Jaeyoon Shim ◽  
Jong‐Chan Lee ◽  
Sang‐Ho Cha
1984 ◽  
Vol 2 (3) ◽  
pp. 236-247 ◽  
Author(s):  
John V. Beninate ◽  
Brenda J. Trask ◽  
George L. Drake

Durable phosphorus-based flame retardants containing polyacrylate emul sions were applied to cotton, cotton-polyester, and cotton-wool twill fabrics to study the effect of the added polyacrylates on the physical properties and flame retardancy. The Thps-urea-TMM flame retardant with added polyacrylate im parted better overall physical properties to 100% cotton fabric than to cotton blend fabrics. Treatments containing polyacrylates with low glass transition temperatures produced fabrics with the highest abrasion resistance, tearing strength and wrinkle recovery. The flame retardancy of treated fabrics was not adversely affected by the addition of polyacrylates to the flame retardant treatments.


1977 ◽  
Vol 47 (6) ◽  
pp. 418-422 ◽  
Author(s):  
Leon H. Chance ◽  
Judy D. Timpa

A new flame retardant for cotton, tetramethylol 2,4-diamino-6-(3,3,3-tribromo-1-propyl)-1,3,5-triazine (TM-DABT), was synthesized. TM-DABT was applied to cotton fabrics from a combination of water and dimethylformamide by a pad-dry-cure process. It polymerized rapidly on fabric at 140°C to give excellent flame retardancy. Flannelette and twill with add-ons of 13.3% and 11.3%, respectively, passed the FF3–71 flammability test after 50 laundering, with char lengths of 4.7 and 3.4 inches. There was evidence of cellulose crosslinking because fabrics had improved wrinkle-recovery angles, and cotton fibers were insoluble in cupriethylenediamine hydroxide. The finish was heat-sensitive, as evidenced by noticeable yellowing when white fabrics were cured at 150°C or above, or when they were laundered repeatedly. Various physical properties of the fabrics are presented, as well as oxygen index and thermogravimetric analyses.


RSC Advances ◽  
2016 ◽  
Vol 6 (57) ◽  
pp. 52485-52494 ◽  
Author(s):  
Qiu-Xia He ◽  
Liang Tang ◽  
Teng Fu ◽  
Yue-Quan Shi ◽  
Xiu-Li Wang ◽  
...  

Phosphorus-containing sulfonate ILs with different anions size present different thermal stability, solubility, viscosity, melting points, and cytotoxicity. They show flame retardant effect for PA6 via accelerating decomposition of matrix.


2021 ◽  
pp. 096739112110245
Author(s):  
Jiangbo Wang

A novel phosphorus-silicon containing flame-retardant DOPO-V-PA was used to wrap carbon nanotubes (CNTs). The results of FTIR, XPS, TEM and TGA measurements exhibited that DOPO-V-PA has been successfully grafted onto the surfaces of CNTs, and the CNTs-DOPO-V-PA was obtained. The CNTs-DOPO-V-PA was subsequently incorporated into epoxy resin (EP) for improving the flame retardancy and dispersion. Compared with pure EP, the addition of 2 wt% CNTs-DOPO-V-PA into the EP matrix could achieve better flame retardancy of EP nanocomposites, such as a 30.5% reduction in peak heat release rate (PHRR) and 8.1% reduction in total heat release (THR). Furthermore, DMTA results clearly indicated that the dispersion for CNTs-DOPO-V-PA in EP matrix was better than pristine CNTs.


2021 ◽  
Vol 260 ◽  
pp. 117827
Author(s):  
Ying-Jun Xu ◽  
Lian-Yi Qu ◽  
Yun Liu ◽  
Ping Zhu

2021 ◽  
Vol 2 (1) ◽  
pp. 24-48
Author(s):  
Quoc-Bao Nguyen ◽  
Henri Vahabi ◽  
Agustín Rios de Anda ◽  
Davy-Louis Versace ◽  
Valérie Langlois ◽  
...  

This study has developed novel fully bio-based resorcinol epoxy resin–diatomite composites by a green two-stage process based on the living character of the cationic polymerization. This process comprises the photoinitiation and subsequently the thermal dark curing, enabling the obtaining of thick and non-transparent epoxy-diatomite composites without any solvent and amine-based hardeners. The effects of the diatomite content and the compacting pressure on microstructural, thermal, mechanical, acoustic properties, as well as the flame behavior of such composites have been thoroughly investigated. Towards the development of sound absorbing and flame-retardant construction materials, a compromise among mechanical, acoustic and flame-retardant properties was considered. Consequently, the composite obtained with 50 wt.% diatomite and 3.9 MPa compacting pressure is considered the optimal composite in the present work. Such composite exhibits the enhanced flexural modulus of 2.9 MPa, a satisfying sound absorption performance at low frequencies with Modified Sound Absorption Average (MSAA) of 0.08 (for a sample thickness of only 5 mm), and an outstanding flame retardancy behavior with the peak of heat release rate (pHRR) of 109 W/g and the total heat release of 5 kJ/g in the pyrolysis combustion flow calorimeter (PCFC) analysis.


Sign in / Sign up

Export Citation Format

Share Document