A New Durable Nonphosphorus Flame Retardant for Cotton Based on Tetramethylol 2,4-Diamino-6- (3,3,3-Tribromo-1-Propyl)-1,3,5-Triazine

1977 ◽  
Vol 47 (6) ◽  
pp. 418-422 ◽  
Author(s):  
Leon H. Chance ◽  
Judy D. Timpa

A new flame retardant for cotton, tetramethylol 2,4-diamino-6-(3,3,3-tribromo-1-propyl)-1,3,5-triazine (TM-DABT), was synthesized. TM-DABT was applied to cotton fabrics from a combination of water and dimethylformamide by a pad-dry-cure process. It polymerized rapidly on fabric at 140°C to give excellent flame retardancy. Flannelette and twill with add-ons of 13.3% and 11.3%, respectively, passed the FF3–71 flammability test after 50 laundering, with char lengths of 4.7 and 3.4 inches. There was evidence of cellulose crosslinking because fabrics had improved wrinkle-recovery angles, and cotton fibers were insoluble in cupriethylenediamine hydroxide. The finish was heat-sensitive, as evidenced by noticeable yellowing when white fabrics were cured at 150°C or above, or when they were laundered repeatedly. Various physical properties of the fabrics are presented, as well as oxygen index and thermogravimetric analyses.

2015 ◽  
Vol 17 (1) ◽  
pp. 123-133 ◽  
Author(s):  
S. Basak ◽  
Kartick. K. Samanta ◽  
S. Saxena ◽  
S.K. Chattopadhyay ◽  
R. Narkar ◽  
...  

Abstract Flame retardancy was imparted in cellulosic cotton textile using banana pseudostem sap (BPS), an eco-friendly natural product. The extracted sap was made alkaline and applied in pre-mordanted bleached and mercerized cotton fabrics. Flame retardant properties of both the control and the treated fabrics were analysed in terms of limiting oxygen index (LOI), horizontal and vertical flammability. Fabrics treated with the non-diluted BPS were found to have good flame retardant property with LOI of 30 compared to the control fabric with LOI of 18, i.e., an increase of 1.6 times. In the vertical flammability test, the BPS treated fabric showed flame for a few seconds and then, got extinguished. In the horizontal flammability test, the treated fabric showed no flame, but was burning only with an afterglow with a propagation rate of 7.5 mm/min, which was almost 10 times lower than that noted with the control fabric. The thermal degradation and the pyrolysis of the fabric samples were studied using a thermogravimetric analysis (TGA), and the chemical composition by FTIR, SEM and EDX, besides the pure BPS being characterized by EDX and mass spectroscopy. The fabric after the treatment was found to produce stable natural khaki colour, and there was no significant degradation in mechanical strengths. Based on the results, the mechanism of imparting flame retardancy to cellulosic textile and the formation of natural colour on it using the proposed BPS treatment have been postulated.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 550-560
Author(s):  
Huaifang Wang ◽  
Yingli Cai ◽  
Zhiming Jiang ◽  
Shengnan Guo ◽  
Ping Zhu

AbstractA phosphoramidate flame retardant (dimethyl N,N-bis(2-hydroxyletheyl)phosphoramidate, DMBHP) was synthesized and applied to cotton fabrics for enhancing the flame retardancy. The structure of DMBHP was characterized by FT-IR and NMR. The flame retardancy and combustion behavior of the treated cotton fabrics were evaluated using the vertical flammability test (VFT), limiting oxygen index (LOI), and the cone calorimetric test. Moreover, to further analyze the flame retardant action of DMBHP in cotton fabrics, thermal degradability of the treated fabrics, as well as the chemical structure, surface morphology, and element contents of the char residue of the DMBHP-treated fabrics were also evaluated. The results show that, after treating with DMBHP, the cotton fabrics acquired a LOI value from 18.1 to 31.1 with the concentration increasing to 30% and self-extinguished in VFT tests when treated with up to 15% DMBHP. Besides, the total heat release and the peak heat release rate of DMBHP (30%)-treated fabric decreased obviously compared with the pure cotton along with more residue retained. TG, SEM, and EDS results of treated cotton fabric and the corresponding residue after burning showed that DMBHP has the capability of enhancing char formation. In addition, DMBHP will confer cotton fabrics a certain durability against washing with the help of 1,2,3,4-butanetetracarboxylic acid (BTCA) and citric acid (CA).


1977 ◽  
Vol 47 (5) ◽  
pp. 351-360 ◽  
Author(s):  
Stanley R. Hobart ◽  
Charles H. Mack

Transfer of flame retardancy from fabric treated with THPOH-NH3 to untreated cotton fabric during burning was observed on fabric samples sewed together with glass thread. The transfer effect was evidenced by the development of substantial char and the presence of phosphorus and nitrogen in the char of the untreated fabric. Oxygen-index determinations on multilayered combinations of flame-retarded (FR) and untreated fabrics also supported this observation. The extent of FR transfer varied with the geometrical configuration of the layers and the FR add-on. Tests showed that smoke from combustion of THPOH-NH3-treated fabric, passed through untreated cotton fabric, was the means of transfer of phosphorus, nitrogen, and flame retardancy. The FR transfer effect was also demonstrated for several other phosphorus-containing flame-retardancy treatments.


2019 ◽  
Vol 6 (1) ◽  
pp. 3-12
Author(s):  
SeChin Chang ◽  
Brian Condon ◽  
Jade Smith

Background: New methods for preparing surface modification of flame retardant cotton fabrics were employed by applying a microwave-assisted technique with a minimum amount of co-solvent. Efforts at flame retardant cotton fabrics treated with economic and environmentally friendly flame retardant compounds based on the small molecules piperazine, PN and PNN, were done successfully. Methods and Results: The evidence of flame retardant chemical penetrations or surface modification of cotton fabrics was confirmed by Scanning Electron Microscope (SEM), and the treated cotton fabrics were evaluated by flammability tests, such as 45°angle (clothing textiles test) and limiting Oxygen Index (LOI). Thermogravimetric analysis of all treated cotton fabrics in a nitrogen atmosphere showed high thermal stability, as decomposition occurred between 276.9~291.2°C with 30.5~35.7% residue weight char yield at 600°C. Limiting Oxygen Index (LOI) and the 45° angle flammability test were used to determine the efficiency of the flame-retardant treatments on the fabrics. LOI values for control twill fabric showed ~18 vol% oxygen in nitrogen, whereas the highest treatment level had 32 vol%. High add-on treatments with flame retardants also readily passed the 45° angle flammability test. Conclusion: In the Microscale Combustion Calorimeter (MCC) tests, a decline in heat of combustion was shown through the smaller values acquired for THR, HRC and Tmax for all PN and PNN samples.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Weixing Xu ◽  
Xintao Wu ◽  
Qilin Wen ◽  
Shuangyang Li ◽  
Yongjiao Song ◽  
...  

Abstract Collagen fiber (CF) and silane coupling agent-modified collagen fiber (MCF) were used as flame retardant filler for natural rubber (NR) modification. The combustion phenomena and properties of composites blended with different dosages of CF or MCF were compared to elucidate the flame retardant mechanism of the composites. The flame retardancy of NR can be enhanced effectively by increasing nitrogen content (the nitrogen content of CF is about 18%), creating air pockets, and structuring the flame retardant network in the composites. MCF failed to structure a flame retardant network in the composite, indicating that its modification effects of MCF are weaker than those of CF. When CF dosage was 30 wt%, the composite can achieve the best flame retardancy, with limited oxygen index of 29.4% and without smoke and dripping during burning. This study demonstrated a new method for the flame retardant modification of NR. Graphical abstract


Cellulose ◽  
2015 ◽  
Vol 22 (4) ◽  
pp. 2787-2796 ◽  
Author(s):  
Wei-Wei Gao ◽  
Guang-Xian Zhang ◽  
Feng-Xiu Zhang

1983 ◽  
Vol 1 (2) ◽  
pp. 145-154 ◽  
Author(s):  
John V. Beninate ◽  
Brenda J. Trask ◽  
Timothy A. Calamari ◽  
George L. Drake

Durable phosphorus-based flame retardants were applied to twill fabrics con taining cotton and wool to study the effect of wool on the flame retardancy and physical properties of the blend fabrics. The presence of wool in untreated blend fabrics caused burning rates to decrease and oxygen index values to increase as wool content increased in the blends. These effects were also observed in cotton/ wool blends treated with low levels of the Thps-urea-TMM flame retardant, but were less pronounced in fabrics treated at high levels. Thermogravimetric analyses were conducted to study the thermal degradation of the treated and untreated fabrics. The presence of wool in treated blend fabrics did not sig nificantly change strength retention, area shrinkage and wrinkle recovery values in comparison to similarly treated 100% cotton fabrics.


2017 ◽  
Vol 48 (1) ◽  
pp. 87-118 ◽  
Author(s):  
MD Teli ◽  
Pintu Pandit

As far as the value addition of textile is concerned, flame retardancy of textile materials is considered to be one of the most important properties in textile finishing by both industries as well as academic researchers. Flame-retardant property with thermal stability was imparted to cotton by using green coconut ( Cocos nucifera Linn) shell extract, a natural waste source of coconut. Coconut shell extract was analyzed by high-performance liquid chromatography, Fourier transform infrared spectroscopy, energy-dispersive spectrometry and its phytochemical analysis was also carried out. The coconut shell extract (acidic after extraction) was applied in three different pH (acidic, neutral, and alkaline) conditions to the cotton fabric. Flame-retardant properties of the untreated and the treated cotton fabrics were analyzed by limiting oxygen index and vertical flammability. The study showed that all the treated fabrics had good flame resistance property compared to that of the untreated fabric. The limiting oxygen index value was found to increase by 72.2% after application of the coconut shell extract from alkaline pH. Pyrolysis and char formation behavior of the concerned fabrics were studied using thermogravimetric analysis and differential scanning calorimetric analysis in a nitrogen atmosphere. The physicochemical composition of the untreated and coconut shell extract treated cotton fabrics were analyzed by attenuated total reflection–Fourier transform infrared, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Also, treated cotton fabric showed natural brown color and antibacterial property against both Gram-positive and Gram-negative bacteria. The durability of the flame-retardant functionality to washing with soap solution has also been studied and reported in this paper.


1993 ◽  
Vol 11 (5) ◽  
pp. 442-456 ◽  
Author(s):  
Jun Zhang ◽  
Michael E. Hall ◽  
A. Richard Horrocks

This paper is the first in a series of four which investigates the burning behaviour and the influence of flame retardant species on the flam mability of fibre-forming polymer and copolymers of acrylonitrile. A pressed powdered polymer sheet technique is described that enables a range of polymer compositions in the presence and absence of flame retardants to be assessed for limiting oxygen index, burning rate and char residue deter minations. The method offers a rapid, reproducible and convenient means of screening possible flame retardant systems, and LOI values compare favourably with those of films and fabrics comprising the same polymeric type. Burning rates, however, are sensitive to changes in physical sample character such as form (film vs. powder sheet) and density. Thus the technique forms an excellent basis for the generation of burning data which will enable comprehensive studies of acrylic polymer flammability and flame retardancy to be undertaken.


Sign in / Sign up

Export Citation Format

Share Document