Amino‐functionalized carbon nanotubes for effectively improving the mechanical properties of pre‐impregnated epoxy resin/carbon fiber

2021 ◽  
pp. 51355
Author(s):  
Alan Silva Santos ◽  
Thais Cardoso Oliveira ◽  
Karla Faquine Rodrigues ◽  
Amanda Alvarenga Coutinho Silva ◽  
Gustavo José Lauer Coppio ◽  
...  
2011 ◽  
Vol 233-235 ◽  
pp. 2794-2799
Author(s):  
Yi Luen Li ◽  
Wei Jen Chen ◽  
Ming Yuan Shen ◽  
Chin Lung Chiang ◽  
Ming Chuen Yip

Recently, it has been observed that surface modification of carbon nanotubes(CNTs)influences on CNT’s distribution among epoxy resin and affects the mechanical properties and electrical conductivities of CNTs. Owing to above-mentioned effects, carbon nanotubes treated with oxidizing in organic acids, a kind of surface modification, generates functional groups on the surface of CNTs taht is a major investigation in this study to enhance mechanical properties and electrical conductivities of CNTs. The influence of the different proportion contents of CNTs added into epoxy resin on mechanical properties and electrical conductivities of composites was investigated, and strength of material tested under different temperature environments was observed. Moreover, the creep behavior of carbon fiber(CF)/epoxy resin thermosetting composites tested under different temperature and stress were also concerned to be analyzed. The resulting creep behavior consists of only two stages, including primary creep and steady-state creep. The effects of creep stress, creep time, different humidity treatment on the various temperature creep of composites containing different proportion contents of CNTs were investigated. It is believed that the increased creep strains can be attributed to higher applied stresses, longer creep times, higher humidity, higher temperature and lower hardnesses. The test results also exhibit that mechanical strength and electrical conductivity increase with the increase of CNTs content added into composites. In the influence of temperature effect on specimen, because of different coefficient of expansion among matrix, fiber and CNTs, the overexpansion of matrix caused by high temperature results in crack occurred among matrix. From observation of the fracture surface by SEM image, the debonding occurs and longitudinal fibers are pulled out due to poor interfacial bonding of fiber and matrix, which also results in entire strength degeneration.


2010 ◽  
Vol 123-125 ◽  
pp. 243-246 ◽  
Author(s):  
Yi Luen Li ◽  
Wei Jen Chen ◽  
Chin Lung Chiang ◽  
Ming Chuen Yip

In recent years, the influence of surface modification of carbon nanotubes (CNTs ) on CNT’s dispersion among epoxy resin, mechanical properties and electrical conductivities of CNTs has been observed. On account of above-mentioned effects, that CNTs treated with oxidizing in organic acids, a kind of surface modification, generates functional groups on the surface of CNTs is a major investigation in this study to enhance mechanical properties and electrical conductivities of CNTs. In this study, CNTs dispersed among epoxy resin well by adopting ultrasonication method and then the nano-prepreg was fabricated by mixing CNTs/Epoxy resin into carbon fiber. The influence of the different proportion contents of CNTs added into Epoxy resin on mechanical properties and electrical conductivities of composites is investigated. The strength of material tested under different circumstance is also observed. Furthermore, the creep behavior of carbon fiber/epoxy resin thermosetting composites tested under different circumstance and stress is also concerned to be analyzed.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Seyed Ali Mirsalehi ◽  
Amir Ali Youzbashi ◽  
Amjad Sazgar

AbstractIn this study, epoxy hybrid nanocomposites reinforced by carbon fibers (CFs) were fabricated by a filament winding. To improve out-of-plane (transverse) mechanical properties, 0.5 and 1.0 Wt.% multi-walled carbon nanotubes (MWCNTs) were embedded into epoxy/CF composites. The MWCNTs were well dispersed into the epoxy resin without using any additives. The transverse mechanical properties of epoxy/MWCNT/CF hybrid nanocomposites were evaluated by the tensile test in the vertical direction to the CFs (90º tensile) and flexural tests. The fracture surfaces of composites were studied by scanning electron microscopy (SEM). The SEM observations showed that the bridging of the MWCNTs is one of the mechanisms of transverse mechanical properties enhancement in the epoxy/MWCNT/CF composites. The results of the 90º tensile test proved that the tensile strength and elongation at break of nanocomposite with 1.0 Wt.% MWCNTs improved up to 53% and 50% in comparison with epoxy/CF laminate composite, respectively. Furthermore, the flexural strength, secant modulus, and elongation of epoxy/1.0 Wt.% MWCNT/CF hybrid nanocomposite increased 15%, 7%, and 9% compared to epoxy/CF laminate composite, respectively.


2011 ◽  
Vol 11 (6) ◽  
pp. 5169-5178
Author(s):  
Zhiqing Mao ◽  
Wei Wu ◽  
Yuan Cheng ◽  
Chen Xie ◽  
Dunming Zhang ◽  
...  

2009 ◽  
Vol 79-82 ◽  
pp. 553-556 ◽  
Author(s):  
Ling Fei Shi ◽  
Gang Li ◽  
Gang Sui ◽  
Xiao Ping Yang

The increasing proliferation and application of advanced polymer composites requires higher and broader performance resin matrices. Poly(oxypropylene) with –NH2 end-groups has been widely used to toughen epoxy resins, but the strength of resin matrix may be reduced due to the addition of flexible segments in the crosslinking network. Carbon nanotubes (CNTs) have been paid more and more attention in recent years because of their superior thermal and mechanical properties. In this paper, CNTs grafted with Jeffamines T403 were used to simultaneously improve the reinforcement and toughening of an epoxy resin. The untreated multi-walled carbon nanotubes (u-MWNTs) were functionalized with amine groups according to three steps: carboxylation, acylation, and amidation. The f-MWNTs were characterized by Fourier transform infra-red (FTIR) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that the T403 was grafted to the surface of MWCNTs. The mechanical and thermal properties of epoxy with f-MWNTs were investigated. The tensile and flexural strength increased by 7.77 % and 7.03 % after adding 0.5wt% f-MWCNTs without sacrificing the impact toughness. At the same time, dynamic mechanical thermal analysis (DMTA) showed that the glass transition temperature (Tg) of epoxy with f-MWNTs were increased. The fracture surface of epoxy with f-MWNTs was observed by scanning electron microscopy (SEM) to understand the dispersion of f-MWNTs in epoxy matrix and interfacial adhesion between f-MWNTs and epoxy matrix, which can be attributed to the strong interfacial bonding between f-MWNTs and epoxy resin.


Sign in / Sign up

Export Citation Format

Share Document