Extrusion‐based 3D printing with high‐density polyethylene Birch‐fiber composites

2021 ◽  
pp. 51937
Author(s):  
Agbelenko Koffi ◽  
Lotfi Toubal ◽  
Minde Jin ◽  
Demagna Koffi ◽  
Frank Döpper ◽  
...  
Author(s):  
Carlos Angulo ◽  
Siddhartha Brahma ◽  
Alejandra Espinosa‐Dzib ◽  
Robert Peters ◽  
Katherine M. E. Stewart ◽  
...  

Author(s):  
Felicia Stan ◽  
Nicoleta-Violeta Stanciu ◽  
Catalin Fetecau

Abstract This study focuses on 3D printing of multi-walled carbon nanotube/high density polyethylene (MWCNT/HDPE) composites. First, rheological properties of 0.1, 1, and 5 wt.% MWCNT/HDPE composites were investigated to estimate the 3D printability window. Second, filaments with 1.75 mm diameter were fabricated and subsequently extruded by a commercial 3D printer. Finally, the filaments and 3D printed parts were tested to correlate the rheological, mechanical, and electrical properties with processing parameters. Experimental results show that flow behavior of MWCNT/HDPE composites is a critical factor affecting the 3D printability. The shear viscosity exhibits good shear thinning behavior at high shear rates and significantly increases with increasing nanotube loading from 0.1 to 5 wt.%, at low shear rates. Reliable MWCNT/HDPE filaments were obtained with smooth surface finish and good mechanical and electrical properties. The 0.1 and 1 wt.% MWCNT/HDPE filaments exhibit very good printing characteristics. However, under the flow conditions of a standard 0.4-mm nozzle, 3D printing of 5 wt.% MWCNT/HDPE filament can be rather difficult primarily due to high shear viscosity and nozzle clogging. Thus, further investigation is needed to fully optimize the 3D printing of MWCNT/HDPE composites.


2016 ◽  
Vol 18 (11) ◽  
pp. 8081-8087 ◽  
Author(s):  
Xi Zhang ◽  
Shaodi Zheng ◽  
Xiaofang Zheng ◽  
Zhengying Liu ◽  
Wei Yang ◽  
...  

The positive temperature coefficient (PTC) effect for high-density polyethylene (HDPE)/carbon fiber (CF) composites was studied.


2009 ◽  
Vol 113 (4) ◽  
pp. 2081-2089 ◽  
Author(s):  
Jingjing Zhang ◽  
Chul B. Park ◽  
Ghaus M. Rizvi ◽  
Hanxiong Huang ◽  
Qingping Guo

2021 ◽  
Vol 315 ◽  
pp. 114-119
Author(s):  
Achmad Chafidz M.S. ◽  
Dewi Selvia Fardhyanti ◽  
Megawati ◽  
Prima Astuti Handayani ◽  
Muhammad Rizal

This paper focuses on the preparation of High Density Polyethylene/Poly (Vinyl Alcohol) Fiber composites which was fabricated via melt blending/compounding method using a Laboratory Mixing Extruder (LME). The effect of PVA fiber concentrations (i.e. 0, 5, 10, 20, 30 wt%) on the thermal properties (i.e. melting and crystallization) of the composites was investigated. The thermal properties of the composites were analysed using a Differential Scanning Calorimetry (DSC). The DSC analysis results exhibited that the presence of PVA fiber did not considerably change the melting and crystallization properties of the composites. The melting temperature (Tm) of all the composites samples were similar, which was in the range of 130 - 131 °C. The highest Tm was belong to sample PVAC-20 (i.e. 20 wt% PVA fiber). In the other hand, the crystallinity index (Xc) of the HPDE/PVA fiber composites decreased with the increase of PVA fiber concentrations. The Xc of the composites decreased from 56.7 % for PVAC-0 to 49.8 % for PVAC-20. Additionally, in term of crystallization behavior of the composites, the effect of PVA loadings on the crystallization temperature (Tc) of the composites was also not significant. The Tc of all composites samples were similar, which was about 115 °C. It can be suggested that the addition of PVA fiber did not affect the crystallization process of the matrix.


Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 165 ◽  
Author(s):  
Faham Tahmasebinia ◽  
Marjo Niemelä ◽  
Sanee Ebrahimzadeh Sepasgozar ◽  
Tin Lai ◽  
Winson Su ◽  
...  

Three-dimensional (3D) printing technologies are transforming the design and manufacture of components and products across many disciplines, but their application in the construction industry is still limited. Material deposition processes can achieve infinite geometries. They have advanced from rapid prototyping and model-scale markets to applications in the fabrication of functional products, large objects, and the construction of full-scale buildings. Many international projects have been realised in recent years, and the construction industry is beginning to make use of such dynamic technologies. Advantages of integrating 3D printing with house construction are significant. They include the capacity for mass customisation of designs and parameters to meet functional and aesthetic purposes, the reduction in construction waste from highly precise placement of materials, and the use of recycled waste products in layer deposition materials. With the ultimate goal of improving construction efficiency and decreasing building costs, the researchers applied Strand 7 Finite Element Analysis software to a numerical model designed for 3D printing a cement mix that incorporates the recycled waste product high-density polyethylene (HDPE). The result: construction of an arched, truss-like roof was found to be structurally feasible in the absence of steel reinforcements, and lab-sized prototypes were manufactured according to the numerical model with 3D printing technology. 3D printing technologies can now be customised to building construction. This paper discusses the applications, advantages, limitations, and future directions of this innovative and viable solution to affordable housing construction.


2016 ◽  
Vol 25 (2) ◽  
pp. 136-145 ◽  
Author(s):  
Siewhui Chong ◽  
Guan-Ting Pan ◽  
Mohammad Khalid ◽  
Thomas C.-K. Yang ◽  
Shuo-Ting Hung ◽  
...  

2014 ◽  
Vol 554 ◽  
pp. 17-21
Author(s):  
M.P.M. Hanif ◽  
A.G. Supri ◽  
Z. Firuz

The effect of salicylic acid as a coupling agent on the tensile properties, and morphology analysis of recycled high density polyethylene/wood fiber (rHDPE/WF) composites were studied. Both composites rHDPE/WF and rHDPE/WFM (treatment with salicylic acid) were prepared using Brabender Plasticorder at temperature of 160°C and rotor speed of 50 rpm. The result indicated that rHDPE/WFM composites with salicylic acid exhibit higher tensile strength and modulus of elasticity but lower elongation at break than rHDPE/WF composites. The SEM micrographs showed that the wood fiber was more widely dispersed in the rHDPE matrix with addition of ethyl salicylate than rHDPE/WFM.


Sign in / Sign up

Export Citation Format

Share Document