scholarly journals Melt Rheological Behavior of High Density Polyethylene/Poly(Vinyl Alcohol) Fiber Composites Prepared via Melt Compounding Method

Author(s):  
A. Chafidz ◽  
L. Setyaningsih ◽  
N. Indah ◽  
W. D. P. Rengga ◽  
Haryanto ◽  
...  
2021 ◽  
Vol 315 ◽  
pp. 114-119
Author(s):  
Achmad Chafidz M.S. ◽  
Dewi Selvia Fardhyanti ◽  
Megawati ◽  
Prima Astuti Handayani ◽  
Muhammad Rizal

This paper focuses on the preparation of High Density Polyethylene/Poly (Vinyl Alcohol) Fiber composites which was fabricated via melt blending/compounding method using a Laboratory Mixing Extruder (LME). The effect of PVA fiber concentrations (i.e. 0, 5, 10, 20, 30 wt%) on the thermal properties (i.e. melting and crystallization) of the composites was investigated. The thermal properties of the composites were analysed using a Differential Scanning Calorimetry (DSC). The DSC analysis results exhibited that the presence of PVA fiber did not considerably change the melting and crystallization properties of the composites. The melting temperature (Tm) of all the composites samples were similar, which was in the range of 130 - 131 °C. The highest Tm was belong to sample PVAC-20 (i.e. 20 wt% PVA fiber). In the other hand, the crystallinity index (Xc) of the HPDE/PVA fiber composites decreased with the increase of PVA fiber concentrations. The Xc of the composites decreased from 56.7 % for PVAC-0 to 49.8 % for PVAC-20. Additionally, in term of crystallization behavior of the composites, the effect of PVA loadings on the crystallization temperature (Tc) of the composites was also not significant. The Tc of all composites samples were similar, which was about 115 °C. It can be suggested that the addition of PVA fiber did not affect the crystallization process of the matrix.


2018 ◽  
Vol 773 ◽  
pp. 100-105
Author(s):  
Umi Rofiqah ◽  
Achmad Chafidz ◽  
Lilis Kistriyani ◽  
Mujtahid Kaavessina ◽  
Muhammad Rizal ◽  
...  

In the present study, high density poly(ethylene) (HDPE)/poly(vinyl alcohol) (PVA) fiber composites were prepared via melt blending technique using a co-rotating twin screw extruder (TSE). The effect of four different PVA fiber concentrations (i.e. 0, 5, 10, 20 wt%) on the melt and crystallization behavior of the HDPE/PVA fiber composites were investigated. The surface morphology of the composites was analyzed by a scanning electron microscopy (SEM). Whereas, the melt and crystallization behavior of the composites were analyzed by a differential scanning calorimetry (DSC). The SEM analysis on the cryo-fractured surface of the HDPE/PVA fiber composites exhibited that the PVA fibers were well blended/distributed in the HDPE matrix. Additionally, the DSC test results showed that the addition of PVA fiber in the HDPE matrix did not significantly change the melting peak temperature (Tm) of the composites. Furthermore, a slight decrease of the crystallization peak temperature (Tc) can be observed when the PVA fiber was incorporated in the HDPE matrix, which indicated a weak nucleation ability of the PVA fibers in the HDPE crystallization process. The same trend was also observed for the crystallinity index (Xc). The crystallinity index of the composites decreased with increasing PVA fiber loadings.


2018 ◽  
Vol 773 ◽  
pp. 46-50 ◽  
Author(s):  
Achmad Chafidz ◽  
Umi Rofiqah ◽  
Tintin Mutiara ◽  
Muhammad Rizal ◽  
Mujtahid Kaavessina ◽  
...  

In the present work, high density polyethylene (HDPE)/poly (vinyl alcohol) (PVA) fiber composites with four different PVA fiber loadings (i.e. 0, 5, 10, 20 wt%) have been prepared via melt compounding method using a twin-screw extruder. The composites were characterized for their morphology by using a scanning electron microscopy (SEM). Whereas, the dynamic mechanical thermal analysis (DMTA) was carried out by using an oscillatory rheometer. The DMTA test was carried out under torsion mode using temperature sweep test on rectangular composites samples. The DMTA results showed that the storage modulus (G¢) of the composites were higher than that of the neat HDPE and increased with increasing PVA fiber loadings. This indicated that there was a considerable stiffness enhancement of the composites. For example, at temperature of 60°C, the increases of stiffness (i.e. storage modulus) of the composites were approximately 3, 31, and 54% for PVAC-5, 10, and 20, respectively. Whereas, at higher temperature (i.e. 120°C), the increases were about 4, 50, and 98% for PVAC-5, 10, and 20, respectively. These results indicated that even at higher temperatures, the enhancement of storage modulus of the composites was still high.


Author(s):  
Carlos Angulo ◽  
Siddhartha Brahma ◽  
Alejandra Espinosa‐Dzib ◽  
Robert Peters ◽  
Katherine M. E. Stewart ◽  
...  

2021 ◽  
Author(s):  
Yuko Igarashi ◽  
Akihiro Sato ◽  
Hiroaki Okumura ◽  
Fumiaki Nakatsubo ◽  
Takashi Kuboki ◽  
...  

Abstract The dry-pulp direct-kneading method is an industrially viable, low-energy process to manufacture cellulose nanofiber (CNF) reinforced polymer composites, where chemically modified pulps can be nanofibrillated and dispersed uniformly in the polymer matrix during melt-compounding. In this study, cellulose fibers with different sizes, ranging from surface-fibrillated pulps with 20 µm in width to fine CNFs with 20 nm in width were prepared from softwood bleached kraft pulps (NBKPs) using a refiner and high-pressure homogenizer (HPH). These cellulose fibers were modified with alkenyl succinic anhydride (ASA), and then dried. The dried ASA-treated cellulose fibers were used as a feed material for melt-compounding in the dry-pulp direct kneading method to fabricate CNF reinforced high-density polyethylene (HDPE). When surface-fibrillated pulps were employed as a feed material, the pulps were nanofibrillated and dispersed uniformly in the HDPE matrix during the melt-compounding, and the composites had much better properties (i.e., much higher tensile modulus and strength and much lower coefficient of thermal expansion) than the composites produced using the pulps without pre-fibrillation. However, when CNFs were used as a feed material, the CNFs were shortened and agglomerated during the melt-compounding, thus deteriorating the properties of the composites. The study concludes that the pre-fibrillation of pulps had a significant impact on the morphology and properties of the composites. Unexpectedly, the surface-fibrillated pulp, which can be produced cost-effectively using a refiner at an industry scale, was a more suitable form than the CNF as a feed material for melt-compounding in the dry-pulp direct kneading method.


Sign in / Sign up

Export Citation Format

Share Document