Surface water balance to evaluate the hydrological impacts of small instream diversions and application to the Russian River basin, California, USA

2009 ◽  
Vol 19 (3) ◽  
pp. 274-284 ◽  
Author(s):  
Matthew J. Deitch ◽  
G. Mathias Kondolf ◽  
Adina M. Merenlender
2008 ◽  
Vol 9 (3) ◽  
pp. 521-534 ◽  
Author(s):  
Clara Draper ◽  
Graham Mills

Abstract The atmospheric water balance over the semiarid Murray–Darling River basin in southeast Australia is analyzed based on a consecutive series of 3- to 24-h NWP forecasts from the Australian Bureau of Meteorology’s Limited Area Prediction System (LAPS). Investigation of the LAPS atmospheric water balance, including comparison of the forecast precipitation to analyzed rain gauge observations, indicates that the LAPS forecasts capture the general qualitative features of the water balance. The key features of the atmospheric water balance over the Murray–Darling Basin are small atmospheric moisture flux divergence (at daily to annual time scales) and extended periods during which the atmospheric water balance terms are largely inactive, with the exception of evaporation, which is consistent and very large in summer. These features present unique challenges for NWP modeling. For example, the small moisture fluxes in the basin can easily be obscured by the systematic errors inherent in all NWP models. For the LAPS model forecasts, there is an unrealistically large evaporation excess over precipitation (associated with a positive bias in evaporation) and unexpected behavior in the moisture flux divergence. Two global reanalysis products (the NCEP Reanalysis I and the 40-yr ECMWF Re-Analysis) also both describe (physically unrealistic) long-term negative surface water budgets over the Murray–Darling Basin, suggesting that the surface water budget cannot be sensibly diagnosed based on output from current NWP models. Despite this shortcoming, numerical models are in general the most appropriate tool for examining the atmospheric water balance over the Murray–Darling Basin, as the atmospheric sounding network in Australia has extremely low coverage.


2012 ◽  
Vol 16 (10) ◽  
pp. 3817-3833 ◽  
Author(s):  
L. E. Flint ◽  
A. L. Flint ◽  
B. J. Stolp ◽  
W. R. Danskin

Abstract. Many basins throughout the world have sparse hydrologic and geologic data, but have increasing demands for water and a commensurate need for integrated understanding of surface and groundwater resources. This paper demonstrates a methodology for using a distributed parameter water-balance model, gaged surface-water flow, and a reconnaissance-level groundwater flow model to develop a first-order water balance. Flow amounts are rounded to the nearest 5 million cubic meters per year. The San Diego River basin is 1 of 5 major drainage basins that drain to the San Diego coastal plain, the source of public water supply for the San Diego area. The distributed parameter water-balance model (Basin Characterization Model) was run at a monthly timestep for 1940–2009 to determine a median annual total water inflow of 120 million cubic meters per year for the San Diego region. The model was also run specifically for the San Diego River basin for 1982–2009 to provide constraints to model calibration and to evaluate the proportion of inflow that becomes groundwater discharge, resulting in a median annual total water inflow of 50 million cubic meters per year. On the basis of flow records for the San Diego River at Fashion Valley (US Geological Survey gaging station 11023000), when corrected for upper basin reservoir storage and imported water, the total is 30 million cubic meters per year. The difference between these two flow quantities defines the annual groundwater outflow from the San Diego River basin at 20 million cubic meters per year. These three flow components constitute a first-order water budget estimate for the San Diego River basin. The ratio of surface-water outflow and groundwater outflow to total water inflow are 0.6 and 0.4, respectively. Using total water inflow determined using the Basin Characterization Model for the entire San Diego region and the 0.4 partitioning factor, groundwater outflow from the San Diego region, through the coastal plain aquifer to the Pacific Ocean, is calculated to be approximately 50 million cubic meters per year. The area-scale assessment of water resources highlights several hydrologic features of the San Diego region. Groundwater recharge is episodic; the Basin Characterization Model output shows that 90 percent of simulated recharge occurred during 3 percent of the 1982–2009 period. The groundwater aquifer may also be quite permeable. A reconnaissance-level groundwater flow model for the San Diego River basin was used to check the water budget estimates, and the basic interaction of the surface-water and groundwater system, and the flow values, were found to be reasonable. Horizontal hydraulic conductivity values of the volcanic and metavolcanic bedrock in San Diego region range from 1 to 10 m per day. Overall, results establish an initial hydrologic assessment formulated on the basis of sparse hydrologic data. The described flow variability, extrapolation, and unique characteristics represent a realistic view of current (2012) hydrologic understanding for the San Diego region.


DYNA ◽  
2020 ◽  
Vol 87 (213) ◽  
pp. 192-201
Author(s):  
Bettys Elena Farias

The aim of this paper is to develop a geostatistical model for the surface water balance (SWB) under variable soil moisture conditions of the Pao river basin, Venezuela. The novelty of the research consists in identifying a statistical model that will predict the spatial variability of hydro-meteorological data in the basin. A series of meteorological data from 25 stations for the period 2015-2017 were used in connection with the ordinary kriging technique. Infiltration values were analyzed considering three different soil moisture conditions: dry, normal and wet. To represent the semi variances of the SWB variables, the function J-Bessel was used. An adequate mathematical adjustment between observed and predicted values of SWB variables has been found expressed by the correlation coefficient (R) as followes: for precipitation, 0.54-0.81; for infiltration, 0.68-0.95; for runoff, 0.68-0.92: for evapotranspiration, 0.53-0.86; and for the accumulative volume, 0.53-0.95.


2009 ◽  
Vol 10 (4) ◽  
pp. 981-998 ◽  
Author(s):  
Fengge Su ◽  
Dennis P. Lettenmaier

Abstract The Variable Infiltration Capacity (VIC) land surface hydrology model forced by gridded observed precipitation and temperature for the period 1979–99 is used to simulate the land surface water balance of the La Plata basin (LPB). The modeled water balance is evaluated with streamflow observations from the major tributaries of the LPB. The spatiotemporal variability of the water balance terms of the LPB are then evaluated using offline VIC model simulations, the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), and inferences obtained from a combination of these two. The seasonality and interannual variability of the water balance terms vary across the basin. Over the Uruguay River basin and the entire LPB, precipitation (P) exceeds evapotranspiration (E) and the basins act as a moisture sink. However, the Paraguay River basin acts as a net source of moisture in dry seasons (strong negative P − E). The annual means and monthly time series of ERA-40 P are in good agreement with gauge observations over the entire LPB and its subbasins, except for the Uruguay basin. The E estimates from VIC and inferred from the ERA-40 atmospheric moisture budget are consistent in both seasonal and interannual variations over the entire LPB, but large discrepancies exist between the two E estimates over the subbasins. The long-term mean of atmospheric moisture convergence P − E agrees well with observed runoff R for the upper Paraná River basin, whereas the imbalance is large (28%) for the Uruguay basin—possibly because of its small size. Major problems appear over the Paraguay basin with negative long-term mean of atmospheric moisture convergence P − E, which is not physically realistic. The computed precipitation recycling in the LPB (for L = 500 km) exhibits strong seasonal and spatial variations with ratios of 0%–3% during the cold season and 5%–7% during the warm season.


2020 ◽  
pp. 102-109
Author(s):  
D.KH. DOMULLODZHANOV ◽  
◽  
R. RAHMATILLOEV

The article presents the results of the field studies and observations that carried out on the territory of the hilly, low-mountain and foothill agro landscapes of the Kyzylsu-yuzhnaya (Kyzylsu-Southern) River Basin of Tajikistan. Taking into account the high-altitude location of households and the amount of precipitation in the river basin, the annual volumes of water accumulated with the use of low-cost systems of collection and storage of precipitation have been clarified. The amount of water accumulated in the precipitation collection and storage systems has been established, the volume of water used for communal and domestic needs,the watering of livestock and the amount of water that can be used to irrigate crops in the have been determined. Possible areas of irrigation of household plots depending on the different availability of precipitation have been determined. It has been established that in wet years (with precipitation of about 10%) the amount of water collected using drip irrigation will be sufficient for irrigation of 0.13 hectares, and in dry years (with 90% of precipitation) it will be possible to irrigate only 0.03 ha of the household plot. On the basis of the basin, the total area of irrigation in wet years can be 4497 ha, and in dry years only 1087 ha. Taking into account the forecasts of population growth by 2030 and an increase in the number of households, the total area of irrigation of farmlands in wet years may reach 5703 hectares,and in dry years – 1379 hectares. Growing crops on household plots under irrigation contributes to a significant increase in land productivity and increases the efficiency of water use of the Kyzylsu-yuzhnaya basin.


Sign in / Sign up

Export Citation Format

Share Document