scholarly journals The Atmospheric Water Balance over the Semiarid Murray–Darling River Basin

2008 ◽  
Vol 9 (3) ◽  
pp. 521-534 ◽  
Author(s):  
Clara Draper ◽  
Graham Mills

Abstract The atmospheric water balance over the semiarid Murray–Darling River basin in southeast Australia is analyzed based on a consecutive series of 3- to 24-h NWP forecasts from the Australian Bureau of Meteorology’s Limited Area Prediction System (LAPS). Investigation of the LAPS atmospheric water balance, including comparison of the forecast precipitation to analyzed rain gauge observations, indicates that the LAPS forecasts capture the general qualitative features of the water balance. The key features of the atmospheric water balance over the Murray–Darling Basin are small atmospheric moisture flux divergence (at daily to annual time scales) and extended periods during which the atmospheric water balance terms are largely inactive, with the exception of evaporation, which is consistent and very large in summer. These features present unique challenges for NWP modeling. For example, the small moisture fluxes in the basin can easily be obscured by the systematic errors inherent in all NWP models. For the LAPS model forecasts, there is an unrealistically large evaporation excess over precipitation (associated with a positive bias in evaporation) and unexpected behavior in the moisture flux divergence. Two global reanalysis products (the NCEP Reanalysis I and the 40-yr ECMWF Re-Analysis) also both describe (physically unrealistic) long-term negative surface water budgets over the Murray–Darling Basin, suggesting that the surface water budget cannot be sensibly diagnosed based on output from current NWP models. Despite this shortcoming, numerical models are in general the most appropriate tool for examining the atmospheric water balance over the Murray–Darling Basin, as the atmospheric sounding network in Australia has extremely low coverage.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Klaus Goergen ◽  
Stefan Kollet

AbstractRegional climate models (RCMs) are indispensable in climate research, albeit often characterized by biased terrestrial precipitation and water budgets. This study identifies excess oceanic evaporation, in conjunction with the RCMs’ boundary conditions, as drivers contributing to these biases in RCMs with forced sea surface temperatures in a CORDEX RCM ensemble over Europe. The RCMs are relaxed to the prescribed lateral boundary conditions originating from a global model, effectively matching the driving model's overall atmospheric moisture flux divergence. As a consequence, excess oceanic evaporation results in positive precipitation biases over land due to forced internal recycling of moisture to maintain the overall flux divergence prescribed by the boundary conditions. This systematic behaviour is shown through an analysis of long-term atmospheric water budgets and atmospheric moisture exchange between oceanic and continental areas in a multi-model ensemble.


2015 ◽  
Vol 28 (9) ◽  
pp. 3631-3649 ◽  
Author(s):  
Michael G. Bosilovich ◽  
Jiun-Dar Chern ◽  
David Mocko ◽  
Franklin R. Robertson ◽  
Arlindo M. da Silva

Abstract The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model or perhaps assimilating data from an inconsistent observing system. In the MERRA reanalysis, an area of long-term moisture flux divergence over land has been identified over the central United States. Here, the water vapor budget is evaluated in this region, taking advantage of two unique features of the MERRA diagnostic output: 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output dataset of the assimilated observations and their innovations (e.g., forecast departures). In the central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRA’s Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 0600 and 1800 UTC analysis cycles, when radiosonde information is not prevalent. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSU-A (mainly window channels) and Atmospheric Infrared Sounder (AIRS). This effort also shows the complexities of the observing system and the reactions of the regional water budgets in reanalyses to the assimilated observations.


2008 ◽  
Vol 21 (7) ◽  
pp. 1449-1466 ◽  
Author(s):  
Zhengzhao Luo ◽  
Dieter Kley ◽  
Richard H. Johnson ◽  
Herman Smit

Abstract In a recent publication (Part I), the authors introduced a data source—Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC)—for monitoring and studying upper-tropospheric water vapor (UTWV) and analyzed 10 yr (1994–2004) of MOZAIC measurements of tropical UTWV in its climatology, variability, transport, and relation to deep convection. In this study (Part II), MOZAIC is used to assess the ECMWF humidity analysis over the tropics, taking advantage of the unique nature of the MOZAIC data, namely, the long data record, near-global coverage, and high accuracy. In parallel to Part I, the ECMWF UTWV analysis is assessed against MOZAIC in the following five aspects: 1) annual cycle, 2) vertical structure, 3) probability density functions (PDFs), 4) moisture flux divergence, and 5) interannual variability. The annual cycle of the ECMWF UTWV shows a similar pattern as MOZAIC but has an overall dry bias of about 10%–30% relative humidity with respect to ice (RHi). The dry biases are larger in the deep tropics than the subtropics and larger over the Asian monsoon region than the tropical Atlantic region. The increase in RH with height (from about 300 to 200 hPa) as observed by MOZAIC is largely missing in the ECMWF analysis, which has a roughly constant RH profile. The bimodal distribution of tropical UTWV is well established in MOZAIC, but for ECMWF, the moist mode is abruptly cut off at 100% RHi due to the lack of ice supersaturation (ISS) in the forecast model. Lack of ISS capability is, however, not the only cause for the dry bias in the ECMWF; it also has more occurrences of lower humidity compared to MOZAIC. There is also evidence that ECMWF underestimates the range of upper-tropospheric humidity (UTH) variation. A comparison of moisture flux divergence is conducted to assess the ability of ECMWF to capture the divergent transport of water vapor. It is shown that the ECMWF can represent the distribution of this quantity fairly well, although the dry bias leads to some underestimate of the magnitude. Finally, the authors show a comparison of the ECMWF and MOZAIC depictions of the interannual variation of UTWV during the 1997/98 ENSO event as an illustration that UTWV variations are more difficult to capture than those of the UT temperature.


2020 ◽  
Vol 33 (22) ◽  
pp. 9929-9943
Author(s):  
Bo-Yi Lu ◽  
Pao-Shin Chu ◽  
Sung-Hun Kim ◽  
Christina Karamperidou

AbstractThe large-scale atmospheric circulation of the North Pacific associated with two types of El Niño—the eastern Pacific (EP) and central Pacific (CP)—is studied in relation to Hawaiian winter (December–February) rainfall and temperature. The eastern and central equatorial Pacific undergo active convective heating during EP El Niño winters. The local Hadley circulation is enhanced and an upper-level westerly jet stream of the North Pacific is elongated eastward. Due to the impact of both phenomena, stronger anomalous descending motion, moisture flux divergence anomalies near Hawaii, and reduction of easterly trade winds, which are characteristic of EP winters, are unfavorable for winter rainfall in Hawaii. As a result of this robust signal, dry conditions prevail in Hawaii and the standard deviation of rainfall during EP winters is smaller than the climatology. For CP winters, the maximum equatorial ocean warming is weaker and shifted westward to near the date line. The subtropical jet stream retreats westward relative to EP winters and the anomalously sinking motion near Hawaii is variable and generally weaker. Although the anomalous moisture flux divergence still exists over the subtropical North Pacific, its magnitude is weaker relative to EP winters. Without strong external forcing, rainfall in the Hawaiian Islands during CP winters is close to the long-term mean. The spread of rainfall from one CP event to another is also larger. The near-surface minimum temperature from three stations in Hawaii reveals cooling during EP winters and slight warming during CP winters.


2012 ◽  
Vol 16 (10) ◽  
pp. 3817-3833 ◽  
Author(s):  
L. E. Flint ◽  
A. L. Flint ◽  
B. J. Stolp ◽  
W. R. Danskin

Abstract. Many basins throughout the world have sparse hydrologic and geologic data, but have increasing demands for water and a commensurate need for integrated understanding of surface and groundwater resources. This paper demonstrates a methodology for using a distributed parameter water-balance model, gaged surface-water flow, and a reconnaissance-level groundwater flow model to develop a first-order water balance. Flow amounts are rounded to the nearest 5 million cubic meters per year. The San Diego River basin is 1 of 5 major drainage basins that drain to the San Diego coastal plain, the source of public water supply for the San Diego area. The distributed parameter water-balance model (Basin Characterization Model) was run at a monthly timestep for 1940–2009 to determine a median annual total water inflow of 120 million cubic meters per year for the San Diego region. The model was also run specifically for the San Diego River basin for 1982–2009 to provide constraints to model calibration and to evaluate the proportion of inflow that becomes groundwater discharge, resulting in a median annual total water inflow of 50 million cubic meters per year. On the basis of flow records for the San Diego River at Fashion Valley (US Geological Survey gaging station 11023000), when corrected for upper basin reservoir storage and imported water, the total is 30 million cubic meters per year. The difference between these two flow quantities defines the annual groundwater outflow from the San Diego River basin at 20 million cubic meters per year. These three flow components constitute a first-order water budget estimate for the San Diego River basin. The ratio of surface-water outflow and groundwater outflow to total water inflow are 0.6 and 0.4, respectively. Using total water inflow determined using the Basin Characterization Model for the entire San Diego region and the 0.4 partitioning factor, groundwater outflow from the San Diego region, through the coastal plain aquifer to the Pacific Ocean, is calculated to be approximately 50 million cubic meters per year. The area-scale assessment of water resources highlights several hydrologic features of the San Diego region. Groundwater recharge is episodic; the Basin Characterization Model output shows that 90 percent of simulated recharge occurred during 3 percent of the 1982–2009 period. The groundwater aquifer may also be quite permeable. A reconnaissance-level groundwater flow model for the San Diego River basin was used to check the water budget estimates, and the basic interaction of the surface-water and groundwater system, and the flow values, were found to be reasonable. Horizontal hydraulic conductivity values of the volcanic and metavolcanic bedrock in San Diego region range from 1 to 10 m per day. Overall, results establish an initial hydrologic assessment formulated on the basis of sparse hydrologic data. The described flow variability, extrapolation, and unique characteristics represent a realistic view of current (2012) hydrologic understanding for the San Diego region.


2005 ◽  
Vol 6 (5) ◽  
pp. 696-709 ◽  
Author(s):  
Alberto M. Mestas-Nuñez ◽  
Chidong Zhang ◽  
David B. Enfield

Abstract This study estimates discrepancies in moisture flux divergence in the Intra-Americas Sea (IAS; including the Gulf of Mexico and the Caribbean Sea) calculated using sounding observations, the NCEP Eta high-resolution regional analysis, and the NCEP–NCAR coarse-resolution global reanalysis. The main purpose of this exercise is to quantify the uncertainties in the global reanalysis when it is used to calculate annual and interannual variability of moisture flux divergence in the region. An accurate estimate of moisture flux divergence is crucial to evaluate whether the IAS serves as a water vapor source for rainfall over the adjacent land. Using the three datasets, the uncertainties of calculated moisture flux divergence due to the design of the boundary of the area, mathematical algorithms, and spatial and temporal resolutions are quantified. The results show that the large seasonal and interannual variability in moisture flux divergence estimated using the NCEP–NCAR reanalysis is not compromised by these uncertainties. Therefore, NCEP–NCAR reanalysis, with its global coverage and long-term record, can be used to provide the best estimate of short climate variability of moisture flux divergence available to date. Further comparisons are made of the moisture flux divergence based on the NCEP–NCAR reanalysis with previous estimates using single-year sounding observations, as well as with multiyear estimates based on global datasets of surface evaporation and precipitation. It is shown that the previous estimates using single-year sounding observations bear large uncertainties because of interannual variability. Large uncertainties also exist in datasets of surface global evaporation and precipitation.


Sign in / Sign up

Export Citation Format

Share Document