The influence of velocity fields on the formation of spectral lines in stellar atmospheres -- correlations of the Voigt function

1986 ◽  
Vol 307 (4) ◽  
pp. 239-244 ◽  
Author(s):  
J. Stahlberg
1979 ◽  
Vol 83 ◽  
pp. 475-478
Author(s):  
Virpi S. Niemelä

Systematic wavelength shifts of series of spectral line centers observed in many early type stars, generally interpreted as due to large scale motions, can give us information about the velocity gradients in stellar atmospheres. However, it should be borne in mind that the velocity gradients inferred from the observed displacements of spectral lines may not correspond to a unique alternative (e.g. see Karp 1978). Also, and especially when we are dealing with stars which have emission lines in their spectra, the structure of the velocity field depends on the assumed temperature structure of the atmosphere, i.e. in which atmospheric region do the lines originate.


2018 ◽  
Vol 610 ◽  
pp. A29 ◽  
Author(s):  
K. Kravchenko ◽  
S. Van Eck ◽  
A. Chiavassa ◽  
A. Jorissen ◽  
B. Freytag ◽  
...  

Context. Cool giant and supergiant star atmospheres are characterized by complex velocity fields originating from convection and pulsation processes which are not fully understood yet. The velocity fields impact the formation of spectral lines, which thus contain information on the dynamics of stellar atmospheres. Aim. The tomographic method allows to recover the distribution of the component of the velocity field projected on the line of sight at different optical depths in the stellar atmosphere. The computation of the contribution function to the line depression aims at correctly identifying the depth of formation of spectral lines in order to construct numerical masks probing spectral lines forming at different optical depths. Methods. The tomographic method is applied to one-dimensional (1D) model atmospheres and to a realistic three-dimensional (3D) radiative hydrodynamics simulation performed with CO5BOLD in order to compare their spectral line formation depths and velocity fields. Results. In 1D model atmospheres, each spectral line forms in a restricted range of optical depths. On the other hand, in 3D simulations, the line formation depths are spread in the atmosphere mainly because of temperature and density inhomogeneities. Comparison of cross-correlation function profiles obtained from 3D synthetic spectra with velocities from the 3D simulation shows that the tomographic method correctly recovers the distribution of the velocity component projected on the line of sight in the atmosphere.


1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


1973 ◽  
Vol 15 ◽  
pp. 39-60 ◽  
Author(s):  
Gordon Worrall ◽  
Alistair M. Wilson

Author(s):  
Yixiao Zhou ◽  
Thomas Nordlander ◽  
Luca Casagrande ◽  
Meridith Joyce ◽  
Yaguang Li ◽  
...  

Abstract We establish a quantitative relationship between photometric and spectroscopic detections of solar-like oscillations using ab initio, three-dimensional (3D), hydrodynamical numerical simulations of stellar atmospheres. We present a theoretical derivation as proof of concept for our method. We perform realistic spectral line formation calculations to quantify the ratio between luminosity and radial velocity amplitude for two case studies: the Sun and the red giant ε Tau. Luminosity amplitudes are computed based on the bolometric flux predicted by 3D simulations with granulation background modelled the same way as asteroseismic observations. Radial velocity amplitudes are determined from the wavelength shift of synthesized spectral lines with methods closely resembling those used in BiSON and SONG observations. Consequently, the theoretical luminosity to radial velocity amplitude ratios are directly comparable with corresponding observations. For the Sun, we predict theoretical ratios of 21.0 and 23.7 ppm/[m s−1] from BiSON and SONG respectively, in good agreement with observations 19.1 and 21.6 ppm/[m s−1]. For ε Tau, we predict K2 and SONG ratios of 48.4 ppm/[m s−1], again in good agreement with observations 42.2 ppm/[m s−1], and much improved over the result from conventional empirical scaling relations which gives 23.2 ppm/[m s−1]. This study thus opens the path towards a quantitative understanding of solar-like oscillations, via detailed modelling of 3D stellar atmospheres.


2014 ◽  
pp. 53-67
Author(s):  
I. Pirkovic ◽  
O. Atanackovic

In this paper we generalized the fast convergent Forth-and-Back Implicit Lambda Iteration (FBILI) method to the solution of the two-level atom line transfer problems in media with low velocity fields using the observer?s reference frame. In order to test the accuracy and the convergence properties of the method we solved several astrophysically important benchmark problems of the NLTE line formation: in a plan-parallel differentially expanding medium of finite thickness, and in spherically symmetric stellar atmospheres, both static and expanding. We compared our solutions with those obtained by other authors using different numerical methods.


1995 ◽  
Vol 155 ◽  
pp. 373-374
Author(s):  
Michael D. Albrow ◽  
P. L. Cottrell

There has been a number of observational programmes that have endeavoured to investigate the atmospheric velocity fields in Cepheids (e.g., Sanford 1956, Wallerstein et al. 1992, Butler 1993). These studies measured the radial velocities of lines of different strength, excitation and ionisation potential as these provide an indication of line formation at different levels in the atmosphere. From these measurements, the presence of velocity gradients can be inferred, but determination of the magnitude of such gradients requires knowledge of the spectral line depth of formation. Through dynamical modelling we are endeavouring to ascertain what is actually being measured in the above observational programmes.


1969 ◽  
Vol 1 (6) ◽  
pp. 293-294
Author(s):  
M. D. Waterworth

In designing a stellar spectrograph, it is pointless to exceed the resolving power necessary to obtain all the information from the spectrum of a star. This is limited mainly by atomic thermal motions, giving rise to the Doppler broadening of spectral lines, by turbulence and rotation of the stellar atmospheres in which the lines are formed, and by collisional broadening.


2019 ◽  
Vol 488 (4) ◽  
pp. 5594-5603 ◽  
Author(s):  
A M Popov ◽  
N I Sushkov ◽  
S M Zaytsev ◽  
T A Labutin

ABSTRACT Stark effect is observed in many natural and artificial plasmas and is of great importance for diagnostic purposes. Since this effect alters profiles of spectral lines, it should be taken into account when assessing chemical composition of radiation sources, including stars. Copper is one of the elements which studies of stellar atmospheres deal with. To this end, UV and visible Cu lines are used. However, there is a lack of agreement between existing data on their Stark parameters. It is therefore of interest to obtain new experimental data on these lines and to compare them to previous results. In this work, we have estimated Stark widths and shifts for three blue-green lines at 5105.54, 5153.24, and 5218.20 Å (corresponding transitions are [3d104p] 2P° → [3d94s2] 2D and [3d104d] 2D → [3d104p] 2P°) observed in a ‘long-spark’ laser-induced plasma. For the first time, we have accurately estimated an impact of hyperfine splitting on the profile shapes of the studied lines taking also into account the isotope shifts. We have shown that both effects considerably influence shift and width of Cu i line at 5105.54 Å, and shifts of Cu i lines at 5153.24 and 5218.20 Å.


2006 ◽  
Vol 2 (S239) ◽  
pp. 103-112
Author(s):  
John D. Landstreet

AbstractConvection occurs in the visible photospheric layers of most stars having Te less than about 10000 K, and in some hotter stars. The solar granulation pattern is a symptom of this, as is the non-zero microturbulent velocity often required in abundance analysis to make both weak and strong lines yield the same abundance.In very sharp-lined stars, the presence of a non-thermal velocity field in the visible stellar atmosphere leads to several other effects which may be detected in spectral line profiles. These include radial velocities that vary systematically with equivalent width, distortions of the line profile as compared to a profile computed with a Voigt profile and rotational broadening (“macroturbulence”), and asymmetries with respect to the line centre (“bisector curvature”).Detection and interpretation of these effects, with the goal of obtaining empirical information about a velocity field present in the visible layers, requires comparison with calculated synthetic spectra which incorporate model velocity fields. Thus, this review will summarize some of the observational clues concerning photospheric velocity fields, as well as modelling aimed at interpreting these data.


Sign in / Sign up

Export Citation Format

Share Document