Rapid anaerobic digestion of organic solid residuals for biogas production using flocculating bacteria and membrane bioreactors – a critical review

2019 ◽  
Vol 13 (4) ◽  
pp. 1119-1132 ◽  
Author(s):  
Rachma Wikandari ◽  
Mohammad J. Taherzadeh
Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 144-167
Author(s):  
Marcos Ellacuriaga ◽  
José García-Cascallana ◽  
Xiomar Gómez

Anaerobic digestion is traditionally used for treating organic materials. This allows the valorization of biogas and recycling of nutrients thanks to the land application of digestates. However, although this technology offers a multitude of advantages, it is still far from playing a relevant role in the energy market and from having significant participation in decarbonizing the economy. Biogas can be submitted to upgrading processes to reach methane content close to that of natural gas and therefore be compatible with many of its industrial applications. However, the high installation and operating costs of these treatment plants are the main constraints for the application of this technology in many countries. There is an urgent need of increasing reactor productivity, biogas yields, and operating at greater throughput without compromising digestion stability. Working at organic solid contents greater than 20% and enhancing hydrolysis and biogas yields to allow retention times to be around 15 days would lead to a significant decrease in reactor volume and therefore in initial capital investments. Anaerobic digestion should be considered as one of the key components in a new economy model characterized by an increase in the degree of circularity. The present manuscript reviews the digestion process analyzing the main parameters associated with digestion performance. The novelty of this manuscript is based on the link established between operating reactor conditions, optimizing treatment capacity, and reducing operating costs that would lead to unlocking the potential of biogas to promote bioenergy production, sustainable agronomic practices, and the integration of this technology into the energy grid.


2020 ◽  
Vol 9 (2) ◽  
pp. 167-175
Author(s):  
Reza Naghavi ◽  
Mohammad Ali Abdoli ◽  
Abdolreza Karbasi ◽  
Mehrdad Adl

Tehran anaerobic digestion power plant has been built on the eastern margin of the urban district by the purpose of processing the organic fraction of municipal solid waste. One of the most suitable methods for the treatment of organic matter is the use of anaerobic digestion (AD) process, which in addition to significant reduction of organic solid wastes, will produce valuable energy. Contributing to maintain the environment, improve urban health, saving on fossil fuels and producing rich fertilizer for agricultural use are important advantages of anaerobic digestion. The plant has been set up in 2014 with a nominal acceptance capacity of 300 tons of organic solid wastes per day and the nominal power generation of 2000 kWe. This system has been faced with considerable challenges in terms of quantity and quality of biogas during operation. The high concentration of hydrogen sulfide (H2S) in produced biogas and the lack of appropriate technologies in the plant for biogas refining are critical for the biogas generator engine deployed in the complex. The purpose of this article is to investigate the factors affecting the quality and quantity of Tehran's AD plant biogas using various H2S reduction approaches and selection of appropriate implementing technologies. The results showed that the recirculation of the digester slurry increased the methane content by more than 30% and reduced H2S by more than 98%.©2020. CBIORE-IJRED. All rights reserved


2021 ◽  
pp. 127143
Author(s):  
Manish Kumar ◽  
Shanta Dutta ◽  
Siming You ◽  
Gang Luo ◽  
Shicheng Zhang ◽  
...  

2018 ◽  
Vol 12 (7) ◽  
pp. 580
Author(s):  
Antony P. Pallan ◽  
S. Antony Raja ◽  
C. G. Varma ◽  
Deepak Mathew D.K. ◽  
Anil K. S. ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Damaris Kerubo Oyaro ◽  
Zablon Isaboke Oonge ◽  
Patts Meshack Odira

2005 ◽  
Vol 40 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Jeremy T. Kraemer ◽  
David M. Bagley

Abstract Upgrading conventional single-stage mesophilic anaerobic digestion to an advanced digestion technology can increase sludge stability, reduce pathogen content, increase biogas production, and also increase ammonia concentrations recycled back to the liquid treatment train. Limited information is available to assess whether the higher ammonia recycle loads from an anaerobic sludge digestion upgrade would lead to higher discharge effluent ammonia concentrations. Biowin, a commercially available wastewater treatment plant simulation package, was used to predict the effects of anaerobic digestion upgrades on the liquid train performance, especially effluent ammonia concentrations. A factorial analysis indicated that the influent total Kjeldahl nitrogen (TKN) and influent alkalinity each had a 50-fold larger influence on the effluent NH3 concentration than either the ambient temperature, liquid train SRT or anaerobic digestion efficiency. Dynamic simulations indicated that the diurnal variation in effluent NH3 concentration was 9 times higher than the increase due to higher digester VSR. Higher recycle NH3 loads caused by upgrades to advanced digestion techniques can likely be adequately managed by scheduling dewatering to coincide with periods of low influent TKN load and ensuring sufficient alkalinity for nitrification.


2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


Sign in / Sign up

Export Citation Format

Share Document