Fluorescent biosensors for high throughput screening of protein kinase inhibitors

2013 ◽  
Vol 9 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Camille Prével ◽  
Morgan Pellerano ◽  
Thi Nhu Ngoc Van ◽  
May C. Morris
2016 ◽  
Vol 52 (81) ◽  
pp. 12112-12115 ◽  
Author(s):  
Jieon Lee ◽  
Il-Soo Park ◽  
Ginam Park ◽  
Kyukwang Cho ◽  
Hee-Sung Park ◽  
...  

We present a new platform for multiplexed protein kinase activity assay using TiO2decorated graphene oxide (GO), which is applicable to high throughput inhibitor screening.


2004 ◽  
Vol 9 (4) ◽  
pp. 309-321 ◽  
Author(s):  
Zhuomei Lu ◽  
Zhizhang Yin ◽  
Linda James ◽  
Rosalinda Syto ◽  
Jill M. Stafford ◽  
...  

Most of the protein kinase inhibitors being developed are directed toward the adenosine triphosphate (ATP) binding site that is highly conserved in many kinases. A major issue with these inhibitors is the specificity for a given kinase. Structure determination of several kinases has shown that protein kinases adopt distinct conformations in their inactive state, in contrast to their strikingly similar conformations in their active states. Hence, alternative assay formats that can identify compounds targeting the inactive form of a protein kinase are desirable. The authors describe the development and optimization of an Immobilized Metal Assay for Phosphochemicals (IMAP™)-based couple™d assay using PDK1 and inactive Akt-2 enzymes. PDK1 phosphorylates Akt-2 at Thr 309 in the catalytic domain, leading to enzymatic activation. Activation of Akt by PDK1 is measured by quantitating the phosphorylation of Akt-specific substrate peptide using the IMAP assay format. This IMAP-coupled assay has been formatted in a 384-well microplate format with a Z′ of 0.73 suitable for high-throughput screening. This assay was evaluated by screening the biologically active sample set LOPAC™ and validated with the protein kinase C inhibitor staurosporine. The IC50 value generated was comparable to the value obtained by the radioactive 33P-γ-ATP flashplate transfer assay. This coupled assay has the potential to identify compounds that target the inactive form of Akt and prevent its activation by PDK1, in addition to finding inhibitors of PDK1 and activated Akt enzymes.


1990 ◽  
Vol 265 (36) ◽  
pp. 22255-22261
Author(s):  
J F Geissler ◽  
P Traxler ◽  
U Regenass ◽  
B J Murray ◽  
J L Roesel ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4417
Author(s):  
Lester J Lambert ◽  
Stefan Grotegut ◽  
Maria Celeridad ◽  
Palak Gosalia ◽  
Laurent JS De Backer ◽  
...  

Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as “undruggable” and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer’s disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.


Sign in / Sign up

Export Citation Format

Share Document